gimp/app/core/gimpimage-convert.c

4342 lines
136 KiB
C

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
* Copyright (C) 1997-2004 Adam D. Moss <adam@gimp.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* 2005-09-04 - Switch 'positional' dither matrix to a 32x32 Bayer,
* which generates results that compress somewhat better (and may look
* worse or better depending on what you enjoy...). [adam@gimp.org]
*
* 2004-12-12 - Use a slower but much nicer technique for finding the
* two best colours to dither between when using fixed/positional
* dither methods. Makes positional dither much less lame. [adam@gimp.org]
*
* 2002-02-10 - Quantizer version 3.0 (the rest of the commit started
* a year ago -- whoops). Divide colours within CIE L*a*b* space using
* CPercep module (cpercep.[ch]), colour-match and dither likewise,
* change the underlying box selection criteria and division point
* logic, bump luminance precision upwards, etc.etc. Generally
* chooses a much richer colour set, especially for low numbers of
* colours. n.b.: Less luminance-sloppy in straight remapping which is
* good for colour but a bit worse for high-frequency detail (that's
* partly what fs-dithering is for -- use it). [adam@gimp.org]
*
* 2001-03-25 - Define accessor function/macro for histogram reads and
* writes. This slows us down a little because we avoid some of the
* dirty tricks we used when we knew that the histogram was a straight
* 3d array, so I've recovered some of the speed loss by implementing
* a 5d accessor function with good locality of reference. This change
* is the first step towards quantizing in a more interesting colourspace
* than frumpy old RGB. [Adam]
*
* 2000/01/30 - Use palette_selector instead of option_menu for custom
* palette. Use libgimp callback functions. [Sven]
*
* 99/09/01 - Created a low-bleed FS-dither option. [Adam]
*
* 99/08/29 - Deterministic colour dithering to arbitrary palettes.
* Ideal for animations that are going to be delta-optimized or simply
* don't want to look 'busy' in static areas. Also a bunch of bugfixes
* and tweaks. [Adam]
*
* 99/08/28 - Deterministic alpha dithering over layers, reduced bleeding
* of transparent values into opaque values, added optional stage to
* remove duplicate or unused colour entries from final colourmap. [Adam]
*
* 99/02/24 - Many revisions to the box-cut quantizer used in RGB->INDEXED
* conversion. Box to be cut is chosen on the basis of posessing an axis
* with the largest sum of weighted perceptible error, rather than based on
* volume or population. The box is split along this axis rather than its
* longest axis, at the point of error mean rather than simply at its centre.
* Error-limiting in the F-S dither has been disabled - it may become optional
* again later. If you're convinced that you have an image where the old
* dither looks better, let me know. [Adam]
*
* 99/01/10 - Hourglass... [Adam]
*
* 98/07/25 - Convert-to-indexed now remembers the last invocation's
* settings. Also, GRAY->INDEXED is more flexible. [Adam]
*
* 98/07/05 - Sucked the warning about quantizing to too many colours into
* a text widget embedded in the dialog, improved intelligence of dialog
* to default 'custom palette' selection to 'Web' if available, and
* in this case not bother to present the native WWW-palette radio
* button. [Adam]
*
* 98/04/13 - avoid a division by zero when converting an empty gray-scale
* image (who would like to do such a thing anyway??) [Sven ]
*
* 98/03/23 - fixed a longstanding fencepost - hopefully the *right*
* way, *again*. [Adam]
*
* 97/11/14 - added a proper pdb interface and support for dithering
* to custom palettes (based on a patch by Eric Hernes) [Yosh]
*
* 97/11/04 - fixed the accidental use of the colour-counting case
* when palette_type is WEB or MONO. [Adam]
*
* 97/10/25 - colour-counting implemented (could use some hashing, but
* performance actually seems okay) - now RGB->INDEXED conversion isn't
* destructive if it doesn't have to be. [Adam]
*
* 97/10/14 - fixed divide-by-zero when converting a completely transparent
* RGB image to indexed. [Adam]
*
* 97/07/01 - started todo/revision log. Put code back in to
* eliminate full-alpha pixels from RGB histogram.
* [Adam D. Moss - adam@gimp.org]
*/
/* TODO for Convert:
*
* . Tweak, tweak, tweak. Old RGB code was tuned muchly.
*
* . Re-enable Heckbert locality for matching, benchmark it
*
* . Try faster fixed-point sRGB<->L*a*b* pixel conversion (see cpercep.c)
*
* . Use palette of another open INDEXED image?
*
* . Do error-splitting trick for GREY->INDEXED (hardly worth it)
*/
/* CODE READABILITY BUGS:
*
* . Most uses of variants of the R,G,B variable naming convention
* are referring to L*a*b* co-ordinates, not RGB co-ordinates!
*
* . Each said variable is usually one of the following, but it is
* rarely clear which one:
* - (assumed sRGB) raw non-linear 8-bit RGB co-ordinates
* - 'full'-precision (unshifted) 8-bit L*a*b* co-ordinates
* - box-space (reduced-precision shifted L*a*b*) co-ordinates
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <glib-object.h>
#include "libgimpcolor/gimpcolor.h"
#include "libgimpmath/gimpmath.h"
#include "core-types.h"
#include "base/cpercep.h"
#include "base/pixel-region.h"
#include "base/tile-manager.h"
#include "gimp.h"
#include "gimpdrawable.h"
#include "gimpdrawable-convert.h"
#include "gimpimage.h"
#include "gimpimage-colormap.h"
#include "gimpimage-undo.h"
#include "gimpimage-undo-push.h"
#include "gimplist.h"
#include "gimplayer.h"
#include "gimplayer-floating-sel.h"
#include "gimppalette.h"
#include "gimpprogress.h"
#include "gimpimage-convert-fsdither.h"
#include "gimpimage-convert-data.h"
#include "gimpimage-convert.h"
#include "gimp-intl.h"
/* basic memory/quality tradeoff */
#define PRECISION_R 8
#define PRECISION_G 6
#define PRECISION_B 6
#define HIST_R_ELEMS (1<<PRECISION_R)
#define HIST_G_ELEMS (1<<PRECISION_G)
#define HIST_B_ELEMS (1<<PRECISION_B)
#define BITS_IN_SAMPLE 8
#define R_SHIFT (BITS_IN_SAMPLE-PRECISION_R)
#define G_SHIFT (BITS_IN_SAMPLE-PRECISION_G)
#define B_SHIFT (BITS_IN_SAMPLE-PRECISION_B)
/* we've stretched our non-cubic L*a*b* volume to touch the
faces of the logical cube we've allocated for it, so re-scale
again in inverse proportion to get back to linear proportions.
*/
#define R_SCALE 13 /* scale R (L*) distances by this much */
#define G_SCALE 24 /* scale G (a*) distances by this much */
#define B_SCALE 26 /* and B (b*) by this much */
typedef struct _Color Color;
typedef struct _QuantizeObj QuantizeObj;
typedef void (* Pass1_Func) (QuantizeObj *);
typedef void (* Pass2i_Func) (QuantizeObj *);
typedef void (* Pass2_Func) (QuantizeObj *, GimpLayer *, TileManager *);
typedef void (* Cleanup_Func) (QuantizeObj *);
typedef unsigned long ColorFreq;
typedef ColorFreq *CFHistogram;
typedef enum {AXIS_UNDEF, AXIS_RED, AXIS_BLUE, AXIS_GREEN} axisType;
typedef double etype;
/*
We provide two different histogram access interfaces. HIST_LIN()
accesses the histogram in histogram-native space, taking absolute
histogram co-ordinates. HIST_RGB() accesses the histogram in RGB
space. This latter takes unsigned 8-bit co-ordinates, internally
converts those co-ordinates to histogram-native space and returns
the access pointer to the corresponding histogram cell.
Using these two interfaces we can import RGB data into a more
interesting space and efficiently work in the latter space until
it is time to output the quantized values in RGB again. For
this final conversion we implement the function lin_to_rgb().
We effectively pull our three-dimensional space into five dimensions
such that the most-entropic bits lay in the lowest bits of the resulting
array index. This gives significantly better locality of reference
and hence a small speedup despite the extra work involved in calculating
the index.
Why not six dimensions? The expansion of dimensionality is good for random
access such as histogram population and the query pattern typical of
dithering but we have some code which iterates in a scanning manner, for
which the expansion is suboptimal. The compromise is to leave the B
dimension unmolested in the lower-order bits of the index, since this is
the dimension most commonly iterated through in the inner loop of the
scans.
--adam
RhGhRlGlB
*/
#define VOL_GBITS (PRECISION_G)
#define VOL_BBITS (PRECISION_B)
#define VOL_RBITS (PRECISION_R)
#define VOL_GBITSh (VOL_GBITS - 3)
#define VOL_GBITSl (VOL_GBITS - VOL_GBITSh)
#define VOL_BBITSh (VOL_BBITS - 4)
#define VOL_BBITSl (VOL_BBITS - VOL_BBITSh)
#define VOL_RBITSh (VOL_RBITS - 3)
#define VOL_RBITSl (VOL_RBITS - VOL_RBITSh)
#define VOL_GMASKh (((1<<VOL_GBITSh)-1) << VOL_GBITSl)
#define VOL_GMASKl ((1<<VOL_GBITSl)-1)
#define VOL_BMASKh (((1<<VOL_BBITSh)-1) << VOL_BBITSl)
#define VOL_BMASKl ((1<<VOL_BBITSl)-1)
#define VOL_RMASKh (((1<<VOL_RBITSh)-1) << VOL_RBITSl)
#define VOL_RMASKl ((1<<VOL_RBITSl)-1)
/* The 5d compromise thing. */
#define REF_FUNC(r,g,b) \
( \
(((r) & VOL_RMASKh) << (VOL_BBITS + VOL_GBITS)) | \
(((r) & VOL_RMASKl) << (VOL_GBITSl + VOL_BBITS)) | \
(((g) & VOL_GMASKh) << (VOL_RBITSl + VOL_BBITS)) | \
(((g) & VOL_GMASKl) << (VOL_BBITS)) | \
(b) \
)
/* The full-on 6d thing. */
/*
#define REF_FUNC(r,g,b) \
( \
(((r) & VOL_RMASKh) << (VOL_BBITS + VOL_GBITS)) | \
(((r) & VOL_RMASKl) << (VOL_GBITSl + VOL_BBITSl)) | \
(((g) & VOL_GMASKh) << (VOL_RBITSl + VOL_BBITS)) | \
(((g) & VOL_GMASKl) << (VOL_BBITSl)) | \
(((b) & VOL_BMASKh) << (VOL_RBITSl + VOL_GBITSl)) | \
((b) & VOL_BMASKl) \
)
*/
/* The boring old 3d thing. */
/*
#define REF_FUNC(r,g,b) (((r)<<(PRECISION_G+PRECISION_B)) | ((g)<<(PRECISION_B)) | (b))
*/
/* You even get to choose whether you want the accessor function
implemented as a macro or an inline function. Don't say I never
give you anything. */
/*
#define HIST_LIN(hist_ptr,r,g,b) (&(hist_ptr)[REF_FUNC((r),(g),(b))])
*/
static inline
ColorFreq* HIST_LIN(ColorFreq *hist_ptr,
const int r, const int g, const int b)
{
return (&(hist_ptr)[
REF_FUNC(r,g,b)
]);
}
#define LOWA (-86.181F)
#define LOWB (-107.858F)
#define HIGHA (98.237F)
#define HIGHB (94.480F)
#if 1
#define LRAT (2.55F)
#define ARAT (255.0F / (HIGHA - LOWA))
#define BRAT (255.0F / (HIGHB - LOWB))
#else
#define LRAT (1.0F)
#define ARAT (1.0F)
#define BRAT (1.0F)
#endif
static inline
void rgb_to_unshifted_lin(const unsigned char r,
const unsigned char g,
const unsigned char b,
int *hr, int *hg, int *hb)
{
double sL, sa, sb;
int or, og, ob;
cpercep_rgb_to_space(r,g,b, &sL, &sa, &sb);
/* fprintf(stderr, " %d-%d-%d -> %0.3f,%0.3f,%0.3f ", r, g, b, sL, sa, sb);*/
or = RINT(sL * LRAT);
og = RINT((sa - LOWA) * ARAT);
ob = RINT((sb - LOWB) * BRAT);
/* fprintf(stderr, " %d-%d-%d ", or, og, ob); */
#if 0
if (or < 0 || or > 255)
fprintf(stderr, " \007R%d ", or);
if (og < 0 || og > 255)
fprintf(stderr, " \007G%d ", og);
if (ob < 0 || ob > 255)
fprintf(stderr, " \007B%d ", ob);
#endif
*hr = CLAMP(or, 0, 255);
*hg = CLAMP(og, 0, 255);
*hb = CLAMP(ob, 0, 255);
/* fprintf(stderr, " %d:%d:%d ", *hr, *hg, *hb); */
}
static inline
void rgb_to_lin(const unsigned char r,
const unsigned char g,
const unsigned char b,
int *hr, int *hg, int *hb)
{
int or, og, ob;
/*
double sL, sa, sb;
{
double low_l = 999.0, low_a = 999.9, low_b = 999.0;
double high_l = -999.0, high_a = -999.0, high_b = -999.0;
int r,g,b;
for (r=0; r<256; r++)
for (g=0; g<256; g++)
for (b=0; b<256; b++)
{
cpercep_rgb_to_space(r,g,b, &sL, &sa, &sb);
if (sL > high_l)
high_l = sL;
if (sL < low_l)
low_l = sL;
if (sa > high_a)
high_a = sa;
if (sa < low_a)
low_a = sa;
if (sb > high_b)
high_b = sb;
if (sb < low_b)
low_b = sb;
}
fprintf(stderr, " [L: %0.3f -> %0.3f / a: %0.3f -> %0.3f / b: %0.3f -> %0.3f]\t", low_l, high_l, low_a, high_a, low_b, high_b);
exit(-1);
}
*/
rgb_to_unshifted_lin (r,g,b,
&or, &og, &ob);
#if 0
#define RSDF(r) ((r) >= ((HIST_R_ELEMS-1) << R_SHIFT) ? HIST_R_ELEMS-1 : \
((r) + ((1<<R_SHIFT)>>1) ) >> R_SHIFT)
#define GSDF(g) ((g) >= ((HIST_G_ELEMS-1) << G_SHIFT) ? HIST_G_ELEMS-1 : \
((g) + ((1<<G_SHIFT)>>1) ) >> G_SHIFT)
#define BSDF(b) ((b) >= ((HIST_B_ELEMS-1) << B_SHIFT) ? HIST_B_ELEMS-1 : \
((b) + ((1<<B_SHIFT)>>1) ) >> B_SHIFT)
#else
#define RSDF(r) ((r) >> R_SHIFT)
#define GSDF(g) ((g) >> G_SHIFT)
#define BSDF(b) ((b) >> B_SHIFT)
#endif
or = RSDF(or);
og = GSDF(og);
ob = BSDF(ob);
*hr = or;
*hg = og;
*hb = ob;
}
static inline
ColorFreq* HIST_RGB(ColorFreq *hist_ptr,
const int r, const int g, const int b)
{
int hr, hg, hb;
rgb_to_lin(r, g, b,
&hr, &hg, &hb);
return (HIST_LIN(hist_ptr,hr,hg,hb));
}
static inline
void lin_to_rgb(const double hr, const double hg, const double hb,
unsigned char *r,
unsigned char *g,
unsigned char *b)
{
double sr,sg,sb;
double ir,ig,ib;
/* fprintf(stderr, "%d.%d.%d ", hr,hg,hb); */
#if 0
ir = (hr * ((double) (1 << R_SHIFT))) + (((double)(1<<R_SHIFT))*0.5);
ig = (hg * ((double) (1 << G_SHIFT))) + (((double)(1<<G_SHIFT))*0.5);
ib = (hb * ((double) (1 << B_SHIFT))) + (((double)(1<<B_SHIFT))*0.5);
#else
/* w/ artificial widening of dynamic range */
ir = ((double)(hr)) * 255.0F / (double)(HIST_R_ELEMS-1);
ig = ((double)(hg)) * 255.0F / (double)(HIST_G_ELEMS-1);
ib = ((double)(hb)) * 255.0F / (double)(HIST_B_ELEMS-1);
#endif
ir = ir / LRAT;
ig = (ig / ARAT) + LOWA;
ib = (ib / BRAT) + LOWB;
/* fprintf(stderr, "%0.1f,%0.1f,%0.1f ", ir,ig,ib); */
cpercep_space_to_rgb(ir, ig, ib,
&sr, &sg, &sb);
*r = RINT(CLAMP(sr, 0.0F, 255.0F));
*g = RINT(CLAMP(sg, 0.0F, 255.0F));
*b = RINT(CLAMP(sb, 0.0F, 255.0F));
/* fprintf(stderr, "%d,%d,%d ", *r, *g, *b); */
}
struct _Color
{
int red;
int green;
int blue;
};
struct _QuantizeObj
{
Pass1_Func first_pass; /* first pass over image data creates colormap */
Pass2i_Func second_pass_init; /* Initialize data which persists over invocations */
Pass2_Func second_pass; /* second pass maps from image data to colormap */
Cleanup_Func delete_func; /* function to clean up data associated with private */
int desired_number_of_colors; /* Number of colors we will allow */
int actual_number_of_colors; /* Number of colors actually needed */
Color cmap[256]; /* colormap created by quantization */
Color clin[256]; /* .. converted back to linear space */
gulong index_used_count[256]; /* how many times an index was used */
CFHistogram histogram; /* holds the histogram */
gboolean want_alpha_dither;
int error_freedom; /* 0=much bleed, 1=controlled bleed */
GimpProgress *progress;
gint nth_layer;
gint n_layers;
};
typedef struct
{
/* The bounds of the box (inclusive); expressed as histogram indexes */
int Rmin, Rmax;
int Rhalferror;
int Gmin, Gmax;
int Ghalferror;
int Bmin, Bmax;
int Bhalferror;
/* The volume (actually 2-norm) of the box */
int volume;
/* The number of nonzero histogram cells within this box */
long colorcount;
/* The sum of the weighted error within this box */
guint64 error;
/* The sum of the unweighted error within this box */
guint64 rerror;
guint64 gerror;
guint64 berror;
} box, *boxptr;
static void zero_histogram_gray (CFHistogram histogram);
static void zero_histogram_rgb (CFHistogram histogram);
static void generate_histogram_gray (CFHistogram hostogram,
GimpLayer *layer,
gboolean alpha_dither);
static void generate_histogram_rgb (CFHistogram histogram,
GimpLayer *layer,
gint col_limit,
gboolean alpha_dither,
GimpProgress *progress,
gint nth_layer,
gint n_layers);
static QuantizeObj * initialize_median_cut (GimpImageBaseType old_type,
gint num_cols,
GimpConvertDitherType dither_type,
GimpConvertPaletteType palette_type,
gboolean alpha_dither,
GimpProgress *progress);
static void compute_color_lin8 (QuantizeObj *quantobj,
CFHistogram histogram,
boxptr boxp,
const int icolor);
static guchar found_cols[MAXNUMCOLORS][3];
static gint num_found_cols;
static gboolean needs_quantize;
static GimpPalette *theCustomPalette = NULL;
/**********************************************************/
typedef struct
{
signed long used_count;
unsigned char initial_index;
} palentryStruct;
static int
mapping_compare (const void *a, const void *b)
{
palentryStruct *m1 = (palentryStruct *) a;
palentryStruct *m2 = (palentryStruct *) b;
return (m2->used_count - m1->used_count);
}
/* FWIW, the make_remap_table() and mapping_compare() function source
and palentryStruct may be re-used under the XFree86-style license.
<adam@gimp.org> */
static void
make_remap_table (const unsigned char old_palette[],
unsigned char new_palette[],
const unsigned long index_used_count[],
unsigned char remap_table[],
int* num_entries)
{
int i,j,k;
unsigned char temppal[256 * 3];
unsigned long tempuse[256];
unsigned long transmap[256];
palentryStruct *palentries;
int used = 0;
memset(temppal, 0, 256 * 3);
memset(tempuse, 0, 256 * sizeof (unsigned long));
memset(transmap, 255, 256 * sizeof (unsigned long));
/* First pass - only collect entries which are marked as
being used at all in index_used_count. */
for (i = 0; i < *num_entries; i++)
{
if (index_used_count[i])
{
temppal[used*3 + 0] = old_palette[i*3 + 0];
temppal[used*3 + 1] = old_palette[i*3 + 1];
temppal[used*3 + 2] = old_palette[i*3 + 2];
tempuse[used] = index_used_count[i];
transmap[i] = used;
used++;
}
}
/* Second pass - remove duplicates. (O(n^3), could do better!) */
for (i = 0; i < used; i++)
{
for (j = 0; j < i; j++)
{
if ((temppal[i*3 + 1] == temppal[j*3 + 1]) &&
(temppal[i*3 + 0] == temppal[j*3 + 0]) &&
(temppal[i*3 + 2] == temppal[j*3 + 2]) &&
tempuse[j] &&
tempuse[i])
{
/* Move the 'used' tally from one to the other. */
tempuse[i] += tempuse[j];
/* zero one of them, deactivating its entry. */
tempuse[j] = 0;
/* change all mappings from this dead index
to the live one. */
for (k = 0; k < *num_entries; k++)
{
if (index_used_count[k] && (transmap[k] == j))
transmap[k] = i;
}
}
}
}
/* Third pass - rank all used indicies to the beginning of the
palette. */
palentries = g_new (palentryStruct, used);
for (i = 0; i < used; i++)
{
palentries[i].initial_index = i;
palentries[i].used_count = tempuse[i];
}
qsort (palentries, used, sizeof (palentryStruct), &mapping_compare);
for (i = 0; i < *num_entries; i++)
{
if (index_used_count[i])
{
for (j = 0; j < used; j++)
{
if ((transmap[i] == palentries[j].initial_index)
&& (palentries[j].used_count))
{
remap_table[i] = j;
break;
}
}
}
}
for (i = 0; i < *num_entries; i++)
{
if (index_used_count[i])
{
new_palette[remap_table[i]*3 + 0] = old_palette[i*3 + 0];
new_palette[remap_table[i]*3 + 1] = old_palette[i*3 + 1];
new_palette[remap_table[i]*3 + 2] = old_palette[i*3 + 2];
}
}
*num_entries = 0;
for (j = 0; j < used; j++)
{
if (palentries[j].used_count)
{
(*num_entries)++;
}
}
g_free (palentries);
}
static void
remap_indexed_layer (GimpLayer *layer,
const guchar *remap_table,
gint num_entries)
{
PixelRegion srcPR, destPR;
gpointer pr;
gboolean has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
for (pr = pixel_regions_register (2, &srcPR, &destPR);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *src = srcPR.data;
guchar *dest = destPR.data;
gint pixels = srcPR.h * srcPR.w;
if (has_alpha)
{
while (pixels--)
{
if (src[ALPHA_I_PIX])
dest[INDEXED_PIX] = remap_table[src[INDEXED_PIX]];
src += srcPR.bytes;
dest += destPR.bytes;
}
}
else
{
while (pixels--)
{
dest[INDEXED_PIX] = remap_table[src[INDEXED_PIX]];
src += srcPR.bytes;
dest += destPR.bytes;
}
}
}
}
static int
color_quicksort (const void *c1,
const void *c2)
{
Color *color1 = (Color *) c1;
Color *color2 = (Color *) c2;
double v1 = GIMP_RGB_LUMINANCE (color1->red, color1->green, color1->blue);
double v2 = GIMP_RGB_LUMINANCE (color2->red, color2->green, color2->blue);
if (v1 < v2)
return -1;
else if (v1 > v2)
return 1;
else
return 0;
}
gboolean
gimp_image_convert (GimpImage *image,
GimpImageBaseType new_type,
/* The following are only used for new_type == GIMP_INDEXED
*/
gint num_cols,
GimpConvertDitherType dither,
gboolean alpha_dither,
gboolean remove_dups,
GimpConvertPaletteType palette_type,
GimpPalette *custom_palette,
GimpProgress *progress,
GError **error)
{
QuantizeObj *quantobj = NULL;
GimpImageBaseType old_type;
GList *list;
const gchar *undo_desc = NULL;
gint nth_layer, n_layers;
g_return_val_if_fail (GIMP_IS_IMAGE (image), FALSE);
g_return_val_if_fail (new_type != gimp_image_base_type (image), FALSE);
g_return_val_if_fail (progress == NULL || GIMP_IS_PROGRESS (progress), FALSE);
g_return_val_if_fail (error == NULL || *error == NULL, FALSE);
if (palette_type == GIMP_CUSTOM_PALETTE)
{
g_return_val_if_fail (custom_palette == NULL ||
GIMP_IS_PALETTE (custom_palette), FALSE);
g_return_val_if_fail (custom_palette == NULL ||
custom_palette->n_colors <= 256, FALSE);
if (! custom_palette)
palette_type = GIMP_MONO_PALETTE;
if (custom_palette->n_colors < 1)
{
g_set_error (error, 0, 0,
_("Cannot convert image: palette is empty."));
return FALSE;
}
}
theCustomPalette = custom_palette;
gimp_set_busy (image->gimp);
n_layers = g_list_length (GIMP_LIST (image->layers)->list);
switch (new_type)
{
case GIMP_RGB:
undo_desc = _("Convert Image to RGB");
break;
case GIMP_GRAY:
undo_desc = _("Convert Image to Grayscale");
break;
case GIMP_INDEXED:
undo_desc = _("Convert Image to Indexed");
break;
}
g_object_freeze_notify (G_OBJECT (image));
gimp_image_undo_group_start (image, GIMP_UNDO_GROUP_IMAGE_CONVERT,
undo_desc);
if (gimp_image_floating_sel (image))
floating_sel_relax (gimp_image_floating_sel (image), TRUE);
/* Push the image type to the stack */
gimp_image_undo_push_image_type (image, NULL);
/* Set the new base type */
old_type = gimp_image_base_type (image);
g_object_set (image, "base-type", new_type, NULL);
/* initialize the colour conversion routines */
cpercep_init ();
/* Convert to indexed? Build histogram if necessary. */
if (new_type == GIMP_INDEXED)
{
gint i;
/* fprintf(stderr, " TO INDEXED(%d) ", num_cols); */
/* don't dither if the input is grayscale and we are simply
* mapping every color
*/
if (old_type == GIMP_GRAY &&
num_cols == 256 &&
palette_type == GIMP_MAKE_PALETTE)
{
dither = GIMP_NO_DITHER;
}
quantobj = initialize_median_cut (old_type, num_cols, dither,
palette_type, alpha_dither,
progress);
if (palette_type == GIMP_MAKE_PALETTE)
{
if (old_type == GIMP_GRAY)
zero_histogram_gray (quantobj->histogram);
else
zero_histogram_rgb (quantobj->histogram);
/* To begin, assume that there are fewer colours in
* the image than the user actually asked for. In that
* case, we don't need to quantize or colour-dither.
*/
needs_quantize = FALSE;
num_found_cols = 0;
/* Build the histogram */
for (list = GIMP_LIST (image->layers)->list, nth_layer = 0;
list;
list = g_list_next (list), nth_layer++)
{
GimpLayer *layer = list->data;
if (old_type == GIMP_GRAY)
generate_histogram_gray (quantobj->histogram,
layer, alpha_dither);
else
generate_histogram_rgb (quantobj->histogram,
layer, num_cols, alpha_dither,
progress, nth_layer, n_layers);
/*
* Note: generate_histogram_rgb may set needs_quantize if
* the image contains more colours than the limit specified
* by the user.
*/
}
}
if (progress)
gimp_progress_set_text (progress,
_("Converting to indexed colors (stage 2)"));
if (old_type == GIMP_RGB &&
! needs_quantize &&
palette_type == GIMP_MAKE_PALETTE)
{
/* If this is an RGB image, and the user wanted a custom-built
* generated palette, and this image has no more colours than
* the user asked for, we don't need the first pass (quantization).
*
* There's also no point in dithering, since there's no error to
* spread. So we destroy the old quantobj and make a new one
* with the remapping function set to a special LUT-based
* no-dither remapper.
*/
quantobj->delete_func (quantobj);
quantobj = initialize_median_cut (old_type, num_cols,
GIMP_NODESTRUCT_DITHER,
palette_type,
alpha_dither,
progress);
/* We can skip the first pass (palette creation) */
quantobj->actual_number_of_colors = num_found_cols;
for (i = 0; i < num_found_cols; i++)
{
quantobj->cmap[i].red = found_cols[i][0];
quantobj->cmap[i].green = found_cols[i][1];
quantobj->cmap[i].blue = found_cols[i][2];
}
}
else
{
(* quantobj->first_pass) (quantobj);
}
if (palette_type == GIMP_MAKE_PALETTE)
qsort (quantobj->cmap,
quantobj->actual_number_of_colors, sizeof (Color),
color_quicksort);
}
if (progress)
gimp_progress_set_text (progress,
_("Converting to indexed colors (stage 3)"));
/* Initialise data which must persist across indexed layer iterations */
switch (new_type)
{
case GIMP_INDEXED:
if (quantobj->second_pass_init)
(* quantobj->second_pass_init) (quantobj);
break;
default:
break;
}
/* Convert all layers */
if (quantobj)
quantobj->n_layers = n_layers;
for (list = GIMP_LIST (image->layers)->list, nth_layer = 0;
list;
list = g_list_next (list), nth_layer++)
{
GimpLayer *layer = list->data;
GimpImageType new_layer_type;
TileManager *new_tiles;
new_layer_type = GIMP_IMAGE_TYPE_FROM_BASE_TYPE (new_type);
if (gimp_drawable_has_alpha (GIMP_DRAWABLE (layer)))
new_layer_type = GIMP_IMAGE_TYPE_WITH_ALPHA (new_layer_type);
new_tiles = tile_manager_new (gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
GIMP_IMAGE_TYPE_BYTES (new_layer_type));
switch (new_type)
{
case GIMP_RGB:
gimp_drawable_convert_rgb (GIMP_DRAWABLE (layer),
new_tiles, old_type);
break;
case GIMP_GRAY:
gimp_drawable_convert_grayscale (GIMP_DRAWABLE (layer),
new_tiles, old_type);
break;
case GIMP_INDEXED:
quantobj->nth_layer = nth_layer;
(* quantobj->second_pass) (quantobj, layer, new_tiles);
break;
default:
break;
}
gimp_drawable_set_tiles_full (GIMP_DRAWABLE (layer), TRUE, NULL,
new_tiles, new_layer_type,
GIMP_ITEM (layer)->offset_x,
GIMP_ITEM (layer)->offset_y);
tile_manager_unref (new_tiles);
}
switch (new_type)
{
case GIMP_RGB:
case GIMP_GRAY:
if (old_type == GIMP_INDEXED)
gimp_image_set_colormap (image, NULL, 0, TRUE);
break;
case GIMP_INDEXED:
if (remove_dups && (palette_type != GIMP_MAKE_PALETTE))
{
guchar colormap[GIMP_IMAGE_COLORMAP_SIZE];
gint i, j;
guchar old_palette[256 * 3];
guchar new_palette[256 * 3];
guchar remap_table[256];
gint num_entries;
for (i = 0, j = 0; i < quantobj->actual_number_of_colors; i++)
{
old_palette[j++] = quantobj->cmap[i].red;
old_palette[j++] = quantobj->cmap[i].green;
old_palette[j++] = quantobj->cmap[i].blue;
}
num_entries = quantobj->actual_number_of_colors;
#if 1
/* Generate a remapping table */
make_remap_table (old_palette, new_palette,
quantobj->index_used_count,
remap_table, &num_entries);
/* Convert all layers */
for (list = GIMP_LIST (image->layers)->list;
list;
list = g_list_next (list))
{
remap_indexed_layer (list->data, remap_table, num_entries);
}
#else
memcpy (new_palette, old_palette, 256 * 3);
#endif
for (i = 0, j = 0; i < num_entries; i++)
{
colormap[j] = new_palette[j]; j++;
colormap[j] = new_palette[j]; j++;
colormap[j] = new_palette[j]; j++;
}
gimp_image_set_colormap (image, colormap, num_entries, TRUE);
}
else
{
guchar colormap[GIMP_IMAGE_COLORMAP_SIZE];
gint i, j;
for (i = 0, j = 0; i < quantobj->actual_number_of_colors; i++)
{
colormap[j++] = quantobj->cmap[i].red;
colormap[j++] = quantobj->cmap[i].green;
colormap[j++] = quantobj->cmap[i].blue;
}
gimp_image_set_colormap (image, colormap,
quantobj->actual_number_of_colors, TRUE);
}
break;
}
/* Delete the quantizer object, if there is one */
if (quantobj)
quantobj->delete_func (quantobj);
if (gimp_image_floating_sel (image))
floating_sel_rigor (gimp_image_floating_sel (image), TRUE);
gimp_image_undo_group_end (image);
gimp_image_invalidate_layer_previews (image);
gimp_image_mode_changed (image);
g_object_thaw_notify (G_OBJECT (image));
gimp_unset_busy (image->gimp);
return TRUE;
}
/*
* Indexed color conversion machinery
*/
static void
zero_histogram_gray (CFHistogram histogram)
{
int i;
for (i = 0; i < 256; i++)
histogram[i] = 0;
}
static void
zero_histogram_rgb (CFHistogram histogram)
{
memset (histogram, 0,
HIST_R_ELEMS * HIST_G_ELEMS * HIST_B_ELEMS * sizeof (ColorFreq));
}
static void
generate_histogram_gray (CFHistogram histogram,
GimpLayer *layer,
gboolean alpha_dither)
{
PixelRegion srcPR;
gpointer pr;
gboolean has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
for (pr = pixel_regions_register (1, &srcPR);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *data = srcPR.data;
gint size = srcPR.w * srcPR.h;
if (has_alpha)
{
while (size--)
{
if (data[ALPHA_G_PIX] > 127)
histogram[*data]++;
data += srcPR.bytes;
}
}
else
{
while (size--)
{
histogram[*data]++;
data += srcPR.bytes;
}
}
}
}
static void
generate_histogram_rgb (CFHistogram histogram,
GimpLayer *layer,
gint col_limit,
gboolean alpha_dither,
GimpProgress *progress,
gint nth_layer,
gint n_layers)
{
PixelRegion srcPR;
gpointer pr;
ColorFreq *colfreq;
gint nfc_iter;
gint row, col, coledge;
gint offsetx, offsety;
glong layer_size;
glong total_size = 0;
gint count = 0;
gboolean has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
/* g_printerr ("col_limit = %d, nfc = %d\n", col_limit, num_found_cols); */
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
layer_size = (gimp_item_width (GIMP_ITEM (layer)) *
gimp_item_height (GIMP_ITEM (layer)));
if (progress)
gimp_progress_set_value (progress, 0.0);
for (pr = pixel_regions_register (1, &srcPR);
pr != NULL;
pr = pixel_regions_process (pr), count++)
{
const guchar *data = srcPR.data;
gint size = srcPR.w * srcPR.h;
total_size += size;
/* g_printerr (" [%d,%d - %d,%d]", srcPR.x, srcPR.y, offsetx, offsety); */
if (needs_quantize)
{
if (alpha_dither)
{
/* if alpha-dithering,
we need to be deterministic w.r.t. offsets */
col = srcPR.x + offsetx;
coledge = col + srcPR.w;
row = srcPR.y + offsety;
while (size--)
{
gboolean transparent = FALSE;
if (has_alpha &&
data[ALPHA_PIX] <
DM[col & DM_WIDTHMASK][row & DM_HEIGHTMASK])
transparent = TRUE;
if (! transparent)
{
colfreq = HIST_RGB (histogram,
data[RED_PIX],
data[GREEN_PIX],
data[BLUE_PIX]);
(*colfreq)++;
}
col++;
if (col == coledge)
{
col = srcPR.x + offsetx;
row++;
}
data += srcPR.bytes;
}
}
else
{
while (size--)
{
if ((has_alpha && ((data[ALPHA_PIX] > 127)))
|| (!has_alpha))
{
colfreq = HIST_RGB (histogram,
data[RED_PIX],
data[GREEN_PIX],
data[BLUE_PIX]);
(*colfreq)++;
}
data += srcPR.bytes;
}
}
}
else
{
/* if alpha-dithering, we need to be deterministic w.r.t. offsets */
col = srcPR.x + offsetx;
coledge = col + srcPR.w;
row = srcPR.y + offsety;
while (size--)
{
gboolean transparent = FALSE;
if (has_alpha)
{
if (alpha_dither)
{
if (data[ALPHA_PIX] <
DM[col & DM_WIDTHMASK][row & DM_HEIGHTMASK])
transparent = TRUE;
}
else
{
if (data[ALPHA_PIX] <= 127)
transparent = TRUE;
}
}
if (! transparent)
{
colfreq = HIST_RGB (histogram,
data[RED_PIX],
data[GREEN_PIX],
data[BLUE_PIX]);
(*colfreq)++;
if (!needs_quantize)
{
for (nfc_iter = 0;
nfc_iter < num_found_cols;
nfc_iter++)
{
if (
(data[RED_PIX] == found_cols[nfc_iter][0])
&&
(data[GREEN_PIX] == found_cols[nfc_iter][1])
&&
(data[BLUE_PIX] == found_cols[nfc_iter][2])
)
goto already_found;
}
/* Colour was not in the table of
* existing colours
*/
num_found_cols++;
if (num_found_cols > col_limit)
{
/* There are more colours in the image
* than were allowed. We switch to plain
* histogram calculation with a view to
* quantizing at a later stage.
*/
needs_quantize = TRUE;
/* g_print ("\nmax colours exceeded - needs quantize.\n");*/
goto already_found;
}
else
{
/* Remember the new colour we just found.
*/
found_cols[num_found_cols-1][0] = data[RED_PIX];
found_cols[num_found_cols-1][1] = data[GREEN_PIX];
found_cols[num_found_cols-1][2] = data[BLUE_PIX];
}
}
}
already_found:
col++;
if (col == coledge)
{
col = srcPR.x + offsetx;
row++;
}
data += srcPR.bytes;
}
}
if (progress && (count % 16 == 0))
gimp_progress_set_value (progress,
(nth_layer + ((gdouble) total_size)/
layer_size) / (gdouble) n_layers);
}
/* g_print ("O: col_limit = %d, nfc = %d\n", col_limit, num_found_cols);*/
}
static boxptr
find_split_candidate (const boxptr boxlist,
const int numboxes,
axisType *which_axis,
const int desired_colors)
{
boxptr boxp;
int i;
etype maxc = 0;
boxptr which = NULL;
double Lbias;
*which_axis = AXIS_UNDEF;
/* we only perform the initial L-split bias /at all/ if the final
number of desired colours is quite low, otherwise it all comes
out in the wash anyway and this initial bias generally only hurts
us in the long run. */
if (desired_colors <= 16)
{
#define BIAS_FACTOR 2.66F
#define BIAS_NUMBER 2 /* 0 */
/* we bias towards splitting across L* for first few colours */
Lbias = (numboxes > BIAS_NUMBER) ? 1.0F : ((double)(BIAS_NUMBER+1) -
((double)numboxes)) /
((double)BIAS_NUMBER / BIAS_FACTOR);
/*Lbias = 1.0;
fprintf(stderr, " [[%d]] ", numboxes);
fprintf(stderr, "Using ramped L-split bias.\n");
fprintf(stderr, "R\n");
*/
}
else
Lbias = 1.0F;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
{
if (boxp->volume > 0)
{
#ifndef _MSC_VER
etype rpe = (double)((boxp->rerror) * R_SCALE * R_SCALE);
etype gpe = (double)((boxp->gerror) * G_SCALE * G_SCALE);
etype bpe = (double)((boxp->berror) * B_SCALE * B_SCALE);
#else
/*
* Sorry about the mess, otherwise would get :
* error C2520: conversion from unsigned __int64 to double
* not implemented, use signed __int64
*/
etype rpe = (double)(((__int64)boxp->rerror) * R_SCALE * R_SCALE);
etype gpe = (double)(((__int64)boxp->gerror) * G_SCALE * G_SCALE);
etype bpe = (double)(((__int64)boxp->berror) * B_SCALE * B_SCALE);
#endif
if (Lbias * rpe > maxc &&
boxp->Rmin < boxp->Rmax)
{
which = boxp;
maxc = Lbias * rpe;
*which_axis = AXIS_RED;
}
if (gpe > maxc &&
boxp->Gmin < boxp->Gmax)
{
which = boxp;
maxc = gpe;
*which_axis = AXIS_GREEN;
}
if (bpe > maxc &&
boxp->Bmin < boxp->Bmax)
{
which = boxp;
maxc = bpe;
*which_axis = AXIS_BLUE;
}
}
}
/* fprintf(stderr, " %f,%p ", maxc, which); */
/* fprintf(stderr, " %llu ", maxc); */
return which;
}
static boxptr
find_biggest_volume (const boxptr boxlist,
const int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
boxptr boxp;
int i;
int maxv = 0;
boxptr which = NULL;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
{
if (boxp->volume > maxv)
{
which = boxp;
maxv = boxp->volume;
}
}
return which;
}
static void
update_box_gray (const CFHistogram histogram,
boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its volume and population */
{
int i, min, max, dist;
ColorFreq ccount;
min = boxp->Rmin;
max = boxp->Rmax;
if (max > min)
for (i = min; i <= max; i++)
{
if (histogram[i] != 0)
{
boxp->Rmin = min = i;
break;
}
}
if (max > min)
for (i = max; i >= min; i--)
{
if (histogram[i] != 0)
{
boxp->Rmax = max = i;
break;
}
}
/* Update box volume.
* We use 2-norm rather than real volume here; this biases the method
* against making long narrow boxes, and it has the side benefit that
* a box is splittable iff norm > 0.
* Since the differences are expressed in histogram-cell units,
* we have to shift back to JSAMPLE units to get consistent distances;
* after which, we scale according to the selected distance scale factors.
*/
dist = max - min;
boxp->volume = dist * dist;
/* Now scan remaining volume of box and compute population */
ccount = 0;
for (i = min; i <= max; i++)
if (histogram[i] != 0)
ccount++;
boxp->colorcount = ccount;
}
static void
update_box_rgb (const CFHistogram histogram,
boxptr boxp,
const int cells_remaining)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its volume, population and error */
{
int R,G,B;
int Rmin,Rmax,Gmin,Gmax,Bmin,Bmax;
int dist0,dist1,dist2;
ColorFreq ccount;
/*
guint64 tempRerror;
guint64 tempGerror;
guint64 tempBerror;
*/
QuantizeObj dummyqo;
box dummybox;
/* fprintf(stderr, "U"); */
Rmin = boxp->Rmin; Rmax = boxp->Rmax;
Gmin = boxp->Gmin; Gmax = boxp->Gmax;
Bmin = boxp->Bmin; Bmax = boxp->Bmax;
if (Rmax > Rmin)
for (R = Rmin; R <= Rmax; R++)
for (G = Gmin; G <= Gmax; G++)
{
for (B = Bmin; B <= Bmax; B++)
{
if (*HIST_LIN(histogram, R, G, B) != 0)
{
boxp->Rmin = Rmin = R;
goto have_Rmin;
}
}
}
have_Rmin:
if (Rmax > Rmin)
for (R = Rmax; R >= Rmin; R--)
for (G = Gmin; G <= Gmax; G++)
{
for (B = Bmin; B <= Bmax; B++)
{
if (*HIST_LIN(histogram, R, G, B) != 0)
{
boxp->Rmax = Rmax = R;
goto have_Rmax;
}
}
}
have_Rmax:
if (Gmax > Gmin)
for (G = Gmin; G <= Gmax; G++)
for (R = Rmin; R <= Rmax; R++)
{
for (B = Bmin; B <= Bmax; B++)
{
if (*HIST_LIN(histogram, R, G, B) != 0)
{
boxp->Gmin = Gmin = G;
goto have_Gmin;
}
}
}
have_Gmin:
if (Gmax > Gmin)
for (G = Gmax; G >= Gmin; G--)
for (R = Rmin; R <= Rmax; R++)
{
for (B = Bmin; B <= Bmax; B++)
{
if (*HIST_LIN(histogram, R, G, B) != 0)
{
boxp->Gmax = Gmax = G;
goto have_Gmax;
}
}
}
have_Gmax:
if (Bmax > Bmin)
for (B = Bmin; B <= Bmax; B++)
for (R = Rmin; R <= Rmax; R++)
{
for (G = Gmin; G <= Gmax; G++)
{
if (*HIST_LIN(histogram, R, G, B) != 0)
{
boxp->Bmin = Bmin = B;
goto have_Bmin;
}
}
}
have_Bmin:
if (Bmax > Bmin)
for (B = Bmax; B >= Bmin; B--)
for (R = Rmin; R <= Rmax; R++)
{
for (G = Gmin; G <= Gmax; G++)
{
if (*HIST_LIN(histogram, R, G, B) != 0)
{
boxp->Bmax = Bmax = B;
goto have_Bmax;
}
}
}
have_Bmax:
/* Update box volume.
* We use 2-norm rather than real volume here; this biases the method
* against making long narrow boxes, and it has the side benefit that
* a box is splittable iff norm > 0. (ADM: note: this isn't true.)
* Since the differences are expressed in histogram-cell units,
* we have to shift back to JSAMPLE units to get consistent distances;
* after which, we scale according to the selected distance scale factors.
*/
dist0 = ((1 + Rmax - Rmin) << R_SHIFT) * R_SCALE;
dist1 = ((1 + Gmax - Gmin) << G_SHIFT) * G_SCALE;
dist2 = ((1 + Bmax - Bmin) << B_SHIFT) * B_SCALE;
boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
/* boxp->volume = dist0 * dist1 * dist2; */
compute_color_lin8(&dummyqo, histogram, boxp, 0);
/*printf("(%d %d %d)\n", dummyqo.cmap[0].red,dummyqo.cmap[0].green,dummyqo.cmap[0].blue);
fflush(stdout);*/
/* Now scan remaining volume of box and compute population */
ccount = 0;
boxp->error = 0;
boxp->rerror = 0;
boxp->gerror = 0;
boxp->berror = 0;
for (R = Rmin; R <= Rmax; R++)
{
for (G = Gmin; G <= Gmax; G++)
{
for (B = Bmin; B <= Bmax; B++)
{
ColorFreq freq_here;
freq_here = *HIST_LIN(histogram, R, G, B);
if (freq_here != 0)
{
int ge, be, re;
dummybox.Rmin = dummybox.Rmax = R;
dummybox.Gmin = dummybox.Gmax = G;
dummybox.Bmin = dummybox.Bmax = B;
compute_color_lin8(&dummyqo, histogram, &dummybox, 1);
re = dummyqo.cmap[0].red - dummyqo.cmap[1].red;
ge = dummyqo.cmap[0].green - dummyqo.cmap[1].green;
be = dummyqo.cmap[0].blue - dummyqo.cmap[1].blue;
boxp->rerror += freq_here * (re) * (re);
boxp->gerror += freq_here * (ge) * (ge);
boxp->berror += freq_here * (be) * (be);
ccount += freq_here;
}
}
}
}
#if 0
fg d;flg fd;kg fld;gflkfld
/* Scan again, taking note of halfway error point for red axis */
tempRerror = 0;
boxp->Rhalferror = Rmin;
#warning r<=?
for (R = Rmin; R <= Rmax; R++)
{
for (G = Gmin; G <= Gmax; G++)
{
for (B = Bmin; B <= Bmax; B++)
{
ColorFreq freq_here;
freq_here = *HIST_LIN(histogram, R, G, B);
if (freq_here != 0)
{
int re;
int idist;
double dist;
dummybox.Rmin = dummybox.Rmax = R;
dummybox.Gmin = dummybox.Gmax = G;
dummybox.Bmin = dummybox.Bmax = B;
compute_color_lin8(&dummyqo, histogram, &dummybox, 1);
re = dummyqo.cmap[0].red - dummyqo.cmap[1].red;
tempRerror += freq_here * (re) * (re);
if (tempRerror*2 >= boxp->rerror)
goto green_axisscan;
else
boxp->Rhalferror = R;
}
}
}
}
fprintf(stderr, " D:");
green_axisscan:
fprintf(stderr, "<%d: %llu/%llu> ", R, tempRerror, boxp->rerror);
/* Scan again, taking note of halfway error point for green axis */
tempGerror = 0;
boxp->Ghalferror = Gmin;
#warning G<=?
for (G = Gmin; G <= Gmax; G++)
{
for (R = Rmin; R <= Rmax; R++)
{
for (B = Bmin; B <= Bmax; B++)
{
ColorFreq freq_here;
freq_here = *HIST_LIN(histogram, R, G, B);
if (freq_here != 0)
{
int ge;
dummybox.Rmin = dummybox.Rmax = R;
dummybox.Gmin = dummybox.Gmax = G;
dummybox.Bmin = dummybox.Bmax = B;
compute_color_lin8(&dummyqo, histogram, &dummybox, 1);
ge = dummyqo.cmap[0].green - dummyqo.cmap[1].green;
tempGerror += freq_here * (ge) * (ge);
if (tempGerror*2 >= boxp->gerror)
goto blue_axisscan;
else
boxp->Ghalferror = G;
}
}
}
}
blue_axisscan:
/* Scan again, taking note of halfway error point for blue axis */
tempBerror = 0;
boxp->Bhalferror = Bmin;
#warning B<=?
for (B = Bmin; B <= Bmax; B++)
{
for (R = Rmin; R <= Rmax; R++)
{
for (G = Gmin; G <= Gmax; G++)
{
ColorFreq freq_here;
freq_here = *HIST_LIN(histogram, R, G, B);
if (freq_here != 0)
{
int be;
dummybox.Rmin = dummybox.Rmax = R;
dummybox.Gmin = dummybox.Gmax = G;
dummybox.Bmin = dummybox.Bmax = B;
compute_color_lin8(&dummyqo, histogram, &dummybox, 1);
be = dummyqo.cmap[0].blue - dummyqo.cmap[1].blue;
tempBerror += freq_here * (be) * (be);
if (tempBerror*2 >= boxp->berror)
goto finished_axesscan;
else
boxp->Bhalferror = B;
}
}
}
}
finished_axesscan:
#else
boxp->Rhalferror = Rmin + (Rmax-Rmin+1)/2;
boxp->Ghalferror = Gmin + (Gmax-Gmin+1)/2;
boxp->Bhalferror = Bmin + (Bmax-Bmin+1)/2;
if (dist0 && dist1 && dist2)
{
axisType longest_ax=AXIS_UNDEF, longest_ax2=AXIS_UNDEF;
int longest_length=0, longest_length2=0;
int ratio;
/*
fprintf(stderr, "[%d,%d,%d=%d,%d,%d] ",
(Rmax - Rmin), (Gmax - Gmin), (Bmax - Bmin),
dist0, dist1, dist2);
*/
if ( dist0 >= longest_length)
{
longest_length2 = longest_length;
longest_ax2 = longest_ax;
longest_length = dist0;
longest_ax = AXIS_RED;
}
else if ( dist0 >= longest_length2)
{
longest_length2 = dist0;
longest_ax2 = AXIS_RED;
}
if ( dist1 >= longest_length)
{
longest_length2 = longest_length;
longest_ax2 = longest_ax;
longest_length = dist1;
longest_ax = AXIS_GREEN;
}
else if ( dist1 >= longest_length2)
{
longest_length2 = dist1;
longest_ax2 = AXIS_GREEN;
}
if ( dist2 >= longest_length)
{
longest_length2 = longest_length;
longest_ax2 = longest_ax;
longest_length = dist2;
longest_ax = AXIS_BLUE;
}
else if ( dist2 >= longest_length2)
{
longest_length2 = dist2;
longest_ax2 = AXIS_BLUE;
}
if (longest_length2 == 0)
longest_length2 = 1;
ratio = (longest_length + longest_length2/2) / longest_length2;
/* fprintf(stderr, " ratio:(%d/%d)=%d ", longest_length, longest_length2, ratio);
fprintf(stderr, "C%d ", cells_remaining); */
if (ratio > cells_remaining+1)
ratio = cells_remaining+1;
if (ratio > 2)
{
switch (longest_ax) {
case AXIS_RED:
if (Rmin + (Rmax-Rmin+ratio/2)/ratio < Rmax)
{
/* fprintf(stderr, "FR%d \007\n",ratio);*/
boxp->Rhalferror = Rmin + (Rmax-Rmin+ratio/2)/ratio;
}
break;
case AXIS_GREEN:
if (Gmin + (Gmax-Gmin+ratio/2)/ratio < Gmax)
{
/* fprintf(stderr, "FG%d \007\n",ratio);*/
boxp->Ghalferror = Gmin + (Gmax-Gmin+ratio/2)/ratio;
}
break;
case AXIS_BLUE:
if (Bmin + (Bmax-Bmin+ratio/2)/ratio < Bmax)
{
/* fprintf(stderr, "FB%d \007\n",ratio);*/
boxp->Bhalferror = Bmin + (Bmax-Bmin+ratio/2)/ratio;
}
break;
default:
g_warning("GRR, UNDEF LONGEST AXIS\007\n");
}
}
}
if (boxp->Rhalferror == Rmax)
boxp->Rhalferror = Rmin;
if (boxp->Ghalferror == Gmax)
boxp->Ghalferror = Gmin;
if (boxp->Bhalferror == Bmax)
boxp->Bhalferror = Bmin;
/*
boxp->Rhalferror = RSDF(dummyqo.cmap[0].red);
boxp->Ghalferror = GSDF(dummyqo.cmap[0].green);
boxp->Bhalferror = BSDF(dummyqo.cmap[0].blue);
*/
/*
boxp->Rhalferror = (RSDF(dummyqo.cmap[0].red) + (Rmin+Rmax)/2)/2;
boxp->Ghalferror = (GSDF(dummyqo.cmap[0].green) + (Gmin+Gmax)/2)/2;
boxp->Bhalferror = (BSDF(dummyqo.cmap[0].blue) + (Bmin+Bmax)/2)/2;
*/
#endif
/*
fprintf(stderr, " %d,%d", dummyqo.cmap[0].blue, boxp->Bmax);
g_assert(boxp->Rhalferror >= boxp->Rmin);
g_assert(boxp->Rhalferror < boxp->Rmax);
g_assert(boxp->Ghalferror >= boxp->Gmin);
g_assert(boxp->Ghalferror < boxp->Gmax);
g_assert(boxp->Bhalferror >= boxp->Bmin);
g_assert(boxp->Bhalferror < boxp->Bmax);*/
/*boxp->error = (sqrt((double)(boxp->error/ccount)));*/
/* boxp->rerror = (sqrt((double)((boxp->rerror)/ccount)));
boxp->gerror = (sqrt((double)((boxp->gerror)/ccount)));
boxp->berror = (sqrt((double)((boxp->berror)/ccount)));*/
/*printf(":%lld / %ld: ", boxp->error, ccount);
printf("(%d-%d-%d)(%d-%d-%d)(%d-%d-%d)\n",
Rmin, boxp->Rhalferror, Rmax,
Gmin, boxp->Ghalferror, Gmax,
Bmin, boxp->Bhalferror, Bmax
);
fflush(stdout);*/
boxp->colorcount = ccount;
}
static int
median_cut_gray (CFHistogram histogram,
boxptr boxlist,
int numboxes,
int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
int lb;
boxptr b1, b2;
while (numboxes < desired_colors)
{
/* Select box to split.
* Current algorithm: by population for first half, then by volume.
*/
b1 = find_biggest_volume (boxlist, numboxes);
if (b1 == NULL) /* no splittable boxes left! */
break;
b2 = boxlist + numboxes; /* where new box will go */
/* Copy the color bounds to the new box. */
b2->Rmax = b1->Rmax;
b2->Rmin = b1->Rmin;
/* Current algorithm: split at halfway point.
* (Since the box has been shrunk to minimum volume,
* any split will produce two nonempty subboxes.)
* Note that lb value is max for lower box, so must be < old max.
*/
lb = (b1->Rmax + b1->Rmin) / 2;
b1->Rmax = lb;
b2->Rmin = lb + 1;
/* Update stats for boxes */
update_box_gray (histogram, b1);
update_box_gray (histogram, b2);
numboxes++;
}
return numboxes;
}
static int
median_cut_rgb (CFHistogram histogram,
boxptr boxlist,
int numboxes,
int desired_colors,
GimpProgress *progress)
/* Repeatedly select and split the largest box until we have enough boxes */
{
int lb;
boxptr b1, b2;
axisType which_axis;
while (numboxes < desired_colors)
{
b1 = find_split_candidate (boxlist, numboxes, &which_axis, desired_colors);
if (b1 == NULL) /* no splittable boxes left! */
break;
b2 = boxlist + numboxes; /* where new box will go */
/* Copy the color bounds to the new box. */
b2->Rmax = b1->Rmax; b2->Gmax = b1->Gmax; b2->Bmax = b1->Bmax;
b2->Rmin = b1->Rmin; b2->Gmin = b1->Gmin; b2->Bmin = b1->Bmin;
/* Choose split point along selected axis, and update box bounds.
* Note that lb value is max for lower box, so must be < old max.
*/
switch (which_axis)
{
case AXIS_RED:
lb = b1->Rhalferror;/* *0 + (b1->Rmax + b1->Rmin) / 2; */
b1->Rmax = lb;
b2->Rmin = lb+1;
g_assert(b1->Rmax >= b1->Rmin);
g_assert(b2->Rmax >= b2->Rmin);
break;
case AXIS_GREEN:
lb = b1->Ghalferror;/* *0 + (b1->Gmax + b1->Gmin) / 2; */
b1->Gmax = lb;
b2->Gmin = lb+1;
g_assert(b1->Gmax >= b1->Gmin);
g_assert(b2->Gmax >= b2->Gmin);
break;
case AXIS_BLUE:
lb = b1->Bhalferror;/* *0 + (b1->Bmax + b1->Bmin) / 2; */
b1->Bmax = lb;
b2->Bmin = lb+1;
g_assert(b1->Bmax >= b1->Bmin);
g_assert(b2->Bmax >= b2->Bmin);
break;
default:
g_error("Uh-oh.");
}
/* Update stats for boxes */
numboxes++;
if (progress && (numboxes % 16 == 0))
gimp_progress_set_value (progress, (gdouble) numboxes / desired_colors);
update_box_rgb (histogram, b1, desired_colors - numboxes);
update_box_rgb (histogram, b2, desired_colors - numboxes);
}
return numboxes;
}
static void
compute_color_gray (QuantizeObj *quantobj,
CFHistogram histogram,
boxptr boxp,
int icolor)
/* Compute representative color for a box, put it in colormap[icolor] */
{
int i, min, max;
guint64 count;
guint64 total;
guint64 gtotal;
min = boxp->Rmin;
max = boxp->Rmax;
total = 0;
gtotal = 0;
for (i = min; i <= max; i++)
{
count = histogram[i];
if (count != 0)
{
total += count;
gtotal += i * count;
}
}
if (total != 0)
{
quantobj->cmap[icolor].red =
quantobj->cmap[icolor].green =
quantobj->cmap[icolor].blue = (gtotal + (total >> 1)) / total;
}
else /* The only situation where total==0 is if the image was null or
* all-transparent. In that case we just put a dummy value in
* the colourmap.
*/
{
quantobj->cmap[icolor].red =
quantobj->cmap[icolor].green =
quantobj->cmap[icolor].blue = 0;
}
}
static void
compute_color_rgb (QuantizeObj *quantobj,
CFHistogram histogram,
boxptr boxp,
int icolor)
/* Compute representative color for a box, put it in colormap[icolor] */
{
/* Current algorithm: mean weighted by pixels (not colors) */
/* Note it is important to get the rounding correct! */
int R, G, B;
int Rmin, Rmax;
int Gmin, Gmax;
int Bmin, Bmax;
ColorFreq total = 0;
ColorFreq Rtotal = 0;
ColorFreq Gtotal = 0;
ColorFreq Btotal = 0;
Rmin = boxp->Rmin; Rmax = boxp->Rmax;
Gmin = boxp->Gmin; Gmax = boxp->Gmax;
Bmin = boxp->Bmin; Bmax = boxp->Bmax;
for (R = Rmin; R <= Rmax; R++)
for (G = Gmin; G <= Gmax; G++)
{
for (B = Bmin; B <= Bmax; B++)
{
ColorFreq this_freq = *HIST_LIN(histogram, R, G, B);
if (this_freq != 0)
{
total += this_freq;
Rtotal += R * this_freq;
Gtotal += G * this_freq;
Btotal += B * this_freq;
}
}
}
if (total > 0)
{
unsigned char red, green, blue;
lin_to_rgb(/*(Rtotal + (total>>1)) / total,
(Gtotal + (total>>1)) / total,
(Btotal + (total>>1)) / total,*/
(double)Rtotal / (double)total,
(double)Gtotal / (double)total,
(double)Btotal / (double)total,
&red, &green, &blue);
quantobj->cmap[icolor].red = red;
quantobj->cmap[icolor].green = green;
quantobj->cmap[icolor].blue = blue;
}
else /* The only situation where total==0 is if the image was null or
* all-transparent. In that case we just put a dummy value in
* the colourmap.
*/
{
quantobj->cmap[icolor].red =
quantobj->cmap[icolor].green =
quantobj->cmap[icolor].blue = 0;
}
}
static void
compute_color_lin8 (QuantizeObj *quantobj,
CFHistogram histogram,
boxptr boxp,
const int icolor)
/* Compute representative color for a box, put it in colormap[icolor] */
{
/* Current algorithm: mean weighted by pixels (not colors) */
/* Note it is important to get the rounding correct! */
int R, G, B;
int Rmin, Rmax;
int Gmin, Gmax;
int Bmin, Bmax;
ColorFreq total = 0;
ColorFreq Rtotal = 0;
ColorFreq Gtotal = 0;
ColorFreq Btotal = 0;
Rmin = boxp->Rmin; Rmax = boxp->Rmax;
Gmin = boxp->Gmin; Gmax = boxp->Gmax;
Bmin = boxp->Bmin; Bmax = boxp->Bmax;
for (R = Rmin; R <= Rmax; R++)
for (G = Gmin; G <= Gmax; G++)
{
for (B = Bmin; B <= Bmax; B++)
{
ColorFreq this_freq = *HIST_LIN(histogram, R, G, B);
if (this_freq != 0)
{
Rtotal += R * this_freq;
Gtotal += G * this_freq;
Btotal += B * this_freq;
total += this_freq;
}
}
}
if (total != 0)
{
quantobj->cmap[icolor].red = ((Rtotal << R_SHIFT) + (total>>1)) / total;
quantobj->cmap[icolor].green = ((Gtotal << G_SHIFT) + (total>>1)) / total;
quantobj->cmap[icolor].blue = ((Btotal << B_SHIFT) + (total>>1)) / total;
}
else /* The only situation where total==0 is if the image was null or
* all-transparent. In that case we just put a dummy value in
* the colourmap.
*/
{
g_warning("eep.");
quantobj->cmap[icolor].red = 0;
quantobj->cmap[icolor].green = 128;
quantobj->cmap[icolor].blue = 128;
}
}
static void
select_colors_gray (QuantizeObj *quantobj,
CFHistogram histogram)
/* Master routine for color selection */
{
boxptr boxlist;
int numboxes;
int desired = quantobj->desired_number_of_colors;
int i;
/* Allocate workspace for box list */
boxlist = g_new (box, desired);
/* Initialize one box containing whole space */
numboxes = 1;
boxlist[0].Rmin = 0;
boxlist[0].Rmax = 255;
/* Shrink it to actually-used volume and set its statistics */
update_box_gray (histogram, boxlist);
/* Perform median-cut to produce final box list */
numboxes = median_cut_gray (histogram, boxlist, numboxes, desired);
quantobj->actual_number_of_colors = numboxes;
/* Compute the representative color for each box, fill colormap */
for (i = 0; i < numboxes; i++)
compute_color_gray (quantobj, histogram, boxlist + i, i);
}
static void
select_colors_rgb (QuantizeObj *quantobj,
CFHistogram histogram)
/* Master routine for color selection */
{
boxptr boxlist;
int numboxes;
int desired = quantobj->desired_number_of_colors;
int i;
/* Allocate workspace for box list */
boxlist = g_new (box, desired);
/* Initialize one box containing whole space */
numboxes = 1;
boxlist[0].Rmin = 0;
boxlist[0].Rmax = HIST_R_ELEMS - 1;
boxlist[0].Gmin = 0;
boxlist[0].Gmax = HIST_G_ELEMS - 1;
boxlist[0].Bmin = 0;
boxlist[0].Bmax = HIST_B_ELEMS - 1;
/* Shrink it to actually-used volume and set its statistics */
update_box_rgb (histogram, &boxlist[0], quantobj->desired_number_of_colors);
/* Perform median-cut to produce final box list */
numboxes = median_cut_rgb (histogram, boxlist, numboxes, desired,
quantobj->progress);
quantobj->actual_number_of_colors = numboxes;
/* Compute the representative color for each box, fill colormap */
for (i = 0; i < numboxes; i++)
{
compute_color_rgb (quantobj, histogram, &boxlist[i], i);
}
}
/*
* These routines are concerned with the time-critical task of mapping input
* colors to the nearest color in the selected colormap.
*
* We re-use the histogram space as an "inverse color map", essentially a
* cache for the results of nearest-color searches. All colors within a
* histogram cell will be mapped to the same colormap entry, namely the one
* closest to the cell's center. This may not be quite the closest entry to
* the actual input color, but it's almost as good. A zero in the cache
* indicates we haven't found the nearest color for that cell yet; the array
* is cleared to zeroes before starting the mapping pass. When we find the
* nearest color for a cell, its colormap index plus one is recorded in the
* cache for future use. The pass2 scanning routines call fill_inverse_cmap
* when they need to use an unfilled entry in the cache.
*
* Our method of efficiently finding nearest colors is based on the "locally
* sorted search" idea described by Heckbert and on the incremental distance
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
* the distances from a given colormap entry to each cell of the histogram can
* be computed quickly using an incremental method: the differences between
* distances to adjacent cells themselves differ by a constant. This allows a
* fairly fast implementation of the "brute force" approach of computing the
* distance from every colormap entry to every histogram cell. Unfortunately,
* it needs a work array to hold the best-distance-so-far for each histogram
* cell (because the inner loop has to be over cells, not colormap entries).
* The work array elements have to be ints, so the work array would need
* 256Kb at our recommended precision. This is not feasible in DOS machines.
*
* To get around these problems, we apply Thomas' method to compute the
* nearest colors for only the cells within a small subbox of the histogram.
* The work array need be only as big as the subbox, so the memory usage
* problem is solved. Furthermore, we need not fill subboxes that are never
* referenced in pass2; many images use only part of the color gamut, so a
* fair amount of work is saved. An additional advantage of this
* approach is that we can apply Heckbert's locality criterion to quickly
* eliminate colormap entries that are far away from the subbox; typically
* three-fourths of the colormap entries are rejected by Heckbert's criterion,
* and we need not compute their distances to individual cells in the subbox.
* The speed of this approach is heavily influenced by the subbox size: too
* small means too much overhead, too big loses because Heckbert's criterion
* can't eliminate as many colormap entries. Empirically the best subbox
* size seems to be about 1/512th of the histogram (1/8th in each direction).
*
* Thomas' article also describes a refined method which is asymptotically
* faster than the brute-force method, but it is also far more complex and
* cannot efficiently be applied to small subboxes. It is therefore not
* useful for programs intended to be portable to DOS machines. On machines
* with plenty of memory, filling the whole histogram in one shot with Thomas'
* refined method might be faster than the present code --- but then again,
* it might not be any faster, and it's certainly more complicated.
*/
/* log2(histogram cells in update box) for each axis; this can be adjusted */
/*#define BOX_R_LOG (PRECISION_R-3)
#define BOX_G_LOG (PRECISION_G-3)
#define BOX_B_LOG (PRECISION_B-3)*/
/*adam*/
#define BOX_R_LOG 0
#define BOX_G_LOG 0
#define BOX_B_LOG 0
#define BOX_R_ELEMS (1<<BOX_R_LOG) /* # of hist cells in update box */
#define BOX_G_ELEMS (1<<BOX_G_LOG)
#define BOX_B_ELEMS (1<<BOX_B_LOG)
#define BOX_R_SHIFT (R_SHIFT + BOX_R_LOG)
#define BOX_G_SHIFT (G_SHIFT + BOX_G_LOG)
#define BOX_B_SHIFT (B_SHIFT + BOX_B_LOG)
/*
* The next three routines implement inverse colormap filling. They could
* all be folded into one big routine, but splitting them up this way saves
* some stack space (the mindist[] and bestdist[] arrays need not coexist)
* and may allow some compilers to produce better code by registerizing more
* inner-loop variables.
*/
static int
find_nearby_colors (QuantizeObj *quantobj,
int minR,
int minG,
int minB,
int colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
* for the nearest entry to some cell(s) in the update box. The update box
* is specified by the center coordinates of its first cell. The number of
* candidate colormap entries is returned, and their colormap indexes are
* placed in colorlist[].
* This routine uses Heckbert's "locally sorted search" criterion to select
* the colors that need further consideration.
*/
{
int numcolors = quantobj->actual_number_of_colors;
int maxR, maxG, maxB;
int centerR, centerG, centerB;
int i, x, ncolors;
int minmaxdist, min_dist, max_dist, tdist;
int mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
/* Compute true coordinates of update box's upper corner and center.
* Actually we compute the coordinates of the center of the upper-corner
* histogram cell, which are the upper bounds of the volume we care about.
* Note that since ">>" rounds down, the "center" values may be closer to
* min than to max; hence comparisons to them must be "<=", not "<".
*/
maxR = minR + ((1 << BOX_R_SHIFT) - (1 << R_SHIFT));
centerR = (minR + maxR + 1) >> 1;
maxG = minG + ((1 << BOX_G_SHIFT) - (1 << G_SHIFT));
centerG = (minG + maxG + 1) >> 1;
maxB = minB + ((1 << BOX_B_SHIFT) - (1 << B_SHIFT));
centerB = (minB + maxB + 1) >> 1;
/* For each color in colormap, find:
* 1. its minimum squared-distance to any point in the update box
* (zero if color is within update box);
* 2. its maximum squared-distance to any point in the update box.
* Both of these can be found by considering only the corners of the box.
* We save the minimum distance for each color in mindist[];
* only the smallest maximum distance is of interest.
*/
minmaxdist = 0x7FFFFFFFL;
for (i = 0; i < numcolors; i++) {
/* We compute the squared-R-distance term, then add in the other two. */
x = quantobj->clin[i].red;
if (x < minR) {
tdist = (x - minR) * R_SCALE;
min_dist = tdist*tdist;
tdist = (x - maxR) * R_SCALE;
max_dist = tdist*tdist;
} else if (x > maxR) {
tdist = (x - maxR) * R_SCALE;
min_dist = tdist*tdist;
tdist = (x - minR) * R_SCALE;
max_dist = tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
min_dist = 0;
if (x <= centerR) {
tdist = (x - maxR) * R_SCALE;
max_dist = tdist*tdist;
} else {
tdist = (x - minR) * R_SCALE;
max_dist = tdist*tdist;
}
}
x = quantobj->clin[i].green;
if (x < minG) {
tdist = (x - minG) * G_SCALE;
min_dist += tdist*tdist;
tdist = (x - maxG) * G_SCALE;
max_dist += tdist*tdist;
} else if (x > maxG) {
tdist = (x - maxG) * G_SCALE;
min_dist += tdist*tdist;
tdist = (x - minG) * G_SCALE;
max_dist += tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerG) {
tdist = (x - maxG) * G_SCALE;
max_dist += tdist*tdist;
} else {
tdist = (x - minG) * G_SCALE;
max_dist += tdist*tdist;
}
}
x = quantobj->clin[i].blue;
if (x < minB) {
tdist = (x - minB) * B_SCALE;
min_dist += tdist*tdist;
tdist = (x - maxB) * B_SCALE;
max_dist += tdist*tdist;
} else if (x > maxB) {
tdist = (x - maxB) * B_SCALE;
min_dist += tdist*tdist;
tdist = (x - minB) * B_SCALE;
max_dist += tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerB) {
tdist = (x - maxB) * B_SCALE;
max_dist += tdist*tdist;
} else {
tdist = (x - minB) * B_SCALE;
max_dist += tdist*tdist;
}
}
mindist[i] = min_dist; /* save away the results */
if (max_dist < minmaxdist)
minmaxdist = max_dist;
}
/* Now we know that no cell in the update box is more than minmaxdist
* away from some colormap entry. Therefore, only colors that are
* within minmaxdist of some part of the box need be considered.
*/
ncolors = 0;
for (i = 0; i < numcolors; i++) {
if (mindist[i] <= minmaxdist)
colorlist[ncolors++] = i;
}
return ncolors;
}
static void
find_best_colors (QuantizeObj *quantobj,
int minR,
int minG,
int minB,
int numcolors,
int colorlist[],
int bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
* given the list of candidate colors prepared by find_nearby_colors.
* Return the indexes of the closest entries in the bestcolor[] array.
* This routine uses Thomas' incremental distance calculation method to
* find the distance from a colormap entry to successive cells in the box.
*/
{
int iR, iG, iB;
int i, icolor;
int * bptr; /* pointer into bestdist[] array */
int * cptr; /* pointer into bestcolor[] array */
int dist0, dist1; /* initial distance values */
int dist2; /* current distance in inner loop */
int xx0, xx1; /* distance increments */
int xx2;
int inR, inG, inB; /* initial values for increments */
/* This array holds the distance to the nearest-so-far color for each cell */
int bestdist[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
/* Initialize best-distance for each cell of the update box */
bptr = bestdist;
for (i = BOX_R_ELEMS*BOX_G_ELEMS*BOX_B_ELEMS-1; i >= 0; i--)
*bptr++ = 0x7FFFFFFFL;
/* For each color selected by find_nearby_colors,
* compute its distance to the center of each cell in the box.
* If that's less than best-so-far, update best distance and color number.
*/
/* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_R ((1 << R_SHIFT) * R_SCALE)
#define STEP_G ((1 << G_SHIFT) * G_SCALE)
#define STEP_B ((1 << B_SHIFT) * B_SCALE)
for (i = 0; i < numcolors; i++) {
icolor = colorlist[i];
/* Compute (square of) distance from minR/G/B to this color */
inR = (minR - quantobj->clin[icolor].red) * R_SCALE;
dist0 = inR*inR;
/* special-case for L*==0: chroma diffs irrelevant */
/* if (minR > 0 || quantobj->clin[icolor].red > 0) */
{
inG = (minG - quantobj->clin[icolor].green) * G_SCALE;
dist0 += inG*inG;
inB = (minB - quantobj->clin[icolor].blue) * B_SCALE;
dist0 += inB*inB;
}
/* else
{
inG = 0;
inB = 0;
} */
/* Form the initial difference increments */
inR = inR * (2 * STEP_R) + STEP_R * STEP_R;
inG = inG * (2 * STEP_G) + STEP_G * STEP_G;
inB = inB * (2 * STEP_B) + STEP_B * STEP_B;
/* Now loop over all cells in box, updating distance per Thomas method */
bptr = bestdist;
cptr = bestcolor;
xx0 = inR;
for (iR = BOX_R_ELEMS-1; iR >= 0; iR--) {
dist1 = dist0;
xx1 = inG;
for (iG = BOX_G_ELEMS-1; iG >= 0; iG--) {
dist2 = dist1;
xx2 = inB;
for (iB = BOX_B_ELEMS-1; iB >= 0; iB--) {
if (dist2 < *bptr) {
*bptr = dist2;
*cptr = icolor;
}
dist2 += xx2;
xx2 += 2 * STEP_B * STEP_B;
bptr++;
cptr++;
}
dist1 += xx1;
xx1 += 2 * STEP_G * STEP_G;
}
dist0 += xx0;
xx0 += 2 * STEP_R * STEP_R;
}
}
}
static void
fill_inverse_cmap_gray (QuantizeObj *quantobj,
CFHistogram histogram,
int pixel)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell R/G/B. (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
Color *cmap;
long dist;
long mindist;
int mindisti;
int i;
cmap = quantobj->cmap;
mindist = 65536;
mindisti = -1;
for (i = 0; i < quantobj->actual_number_of_colors; i++)
{
dist = ABS(pixel - cmap[i].red);
if (dist < mindist)
{
mindist = dist;
mindisti = i;
}
}
if (i >= 0)
histogram[pixel] = mindisti + 1;
}
static void
fill_inverse_cmap_rgb (QuantizeObj *quantobj,
CFHistogram histogram,
int R,
int G,
int B)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell R/G/B. (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
int minR, minG, minB; /* lower left corner of update box */
int iR, iG, iB;
int * cptr; /* pointer into bestcolor[] array */
/* This array lists the candidate colormap indexes. */
int colorlist[MAXNUMCOLORS];
int numcolors; /* number of candidate colors */
/* This array holds the actually closest colormap index for each cell. */
int bestcolor[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
/* Convert cell coordinates to update box id */
R >>= BOX_R_LOG;
G >>= BOX_G_LOG;
B >>= BOX_B_LOG;
/* Compute true coordinates of update box's origin corner.
* Actually we compute the coordinates of the center of the corner
* histogram cell, which are the lower bounds of the volume we care about.
*/
minR = (R << BOX_R_SHIFT) + ((1 << R_SHIFT) >> 1);
minG = (G << BOX_G_SHIFT) + ((1 << G_SHIFT) >> 1);
minB = (B << BOX_B_SHIFT) + ((1 << B_SHIFT) >> 1);
/* Determine which colormap entries are close enough to be candidates
* for the nearest entry to some cell in the update box.
*/
numcolors = find_nearby_colors (quantobj, minR, minG, minB, colorlist);
/* Determine the actually nearest colors. */
find_best_colors (quantobj, minR, minG, minB, numcolors, colorlist,
bestcolor);
/* Save the best color numbers (plus 1) in the main cache array */
R <<= BOX_R_LOG; /* convert id back to base cell indexes */
G <<= BOX_G_LOG;
B <<= BOX_B_LOG;
cptr = bestcolor;
for (iR = 0; iR < BOX_R_ELEMS; iR++) {
for (iG = 0; iG < BOX_G_ELEMS; iG++) {
for (iB = 0; iB < BOX_B_ELEMS; iB++) {
*HIST_LIN(histogram, R+iR, G+iG, B+iB) = (*cptr++) + 1;
}
}
}
}
/* This is pass 1 */
static void
median_cut_pass1_gray (QuantizeObj *quantobj)
{
select_colors_gray (quantobj, quantobj->histogram);
}
static void
median_cut_pass1_rgb (QuantizeObj *quantobj)
{
select_colors_rgb (quantobj, quantobj->histogram);
}
static void
monopal_pass1 (QuantizeObj *quantobj)
{
quantobj -> actual_number_of_colors = 2;
quantobj -> cmap[0].red = 0;
quantobj -> cmap[0].green = 0;
quantobj -> cmap[0].blue = 0;
quantobj -> cmap[1].red = 255;
quantobj -> cmap[1].green = 255;
quantobj -> cmap[1].blue = 255;
}
static void
webpal_pass1 (QuantizeObj *quantobj)
{
int i;
quantobj -> actual_number_of_colors = 216;
for (i=0;i<216;i++)
{
quantobj->cmap[i].red = webpal[i*3];
quantobj->cmap[i].green = webpal[i*3 +1];
quantobj->cmap[i].blue = webpal[i*3 +2];
}
}
static void
custompal_pass1 (QuantizeObj *quantobj)
{
gint i;
GList *list;
GimpPaletteEntry *entry;
guchar r, g, b;
/* fprintf(stderr,
"custompal_pass1: using (theCustomPalette %s) from (file %s)\n",
theCustomPalette->name, theCustomPalette->filename); */
for (i = 0, list = theCustomPalette->colors;
list;
i++, list = g_list_next (list))
{
entry = list->data;
gimp_rgb_get_uchar (&entry->color, &r, &g, &b);
quantobj->cmap[i].red = (gint) r;
quantobj->cmap[i].green = (gint) g;
quantobj->cmap[i].blue = (gint) b;
}
quantobj -> actual_number_of_colors = i;
}
/*
* Map some rows of pixels to the output colormapped representation.
*/
static void
median_cut_pass2_no_dither_gray (QuantizeObj *quantobj,
GimpLayer *layer,
TileManager *new_tiles)
{
PixelRegion srcPR, destPR;
CFHistogram histogram = quantobj->histogram;
ColorFreq *cachep;
const guchar *src;
guchar *dest;
gint row, col;
gint pixel;
gint has_alpha;
gulong *index_used_count = quantobj->index_used_count;
gboolean alpha_dither = quantobj->want_alpha_dither;
gint offsetx, offsety;
gpointer pr;
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, new_tiles,
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
for (pr = pixel_regions_register (2, &srcPR, &destPR);
pr != NULL;
pr = pixel_regions_process (pr))
{
src = srcPR.data;
dest = destPR.data;
for (row = 0; row < srcPR.h; row++)
{
for (col = 0; col < srcPR.w; col++)
{
/* get pixel value and index into the cache */
pixel = src[GRAY_PIX];
cachep = &histogram[pixel];
/* If we have not seen this color before, find nearest colormap entry */
/* and update the cache */
if (*cachep == 0)
fill_inverse_cmap_gray (quantobj, histogram, pixel);
if (has_alpha)
{
gboolean transparent = FALSE;
if (alpha_dither)
{
gint dither_x = (col+offsetx+srcPR.x) & DM_WIDTHMASK;
gint dither_y = (row+offsety+srcPR.y) & DM_HEIGHTMASK;
if ((src[ALPHA_G_PIX]) < DM[dither_x][dither_y])
transparent = TRUE;
}
else
{
if (src[ALPHA_G_PIX] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
}
else
{
dest[ALPHA_I_PIX] = 255;
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
}
}
else
{
/* Now emit the colormap index for this cell */
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
}
src += srcPR.bytes;
dest += destPR.bytes;
}
}
}
}
static void
median_cut_pass2_fixed_dither_gray (QuantizeObj *quantobj,
GimpLayer *layer,
TileManager *new_tiles)
{
PixelRegion srcPR, destPR;
CFHistogram histogram = quantobj->histogram;
ColorFreq *cachep;
gint pixval1=0, pixval2=0;
gint err1,err2;
Color *color1;
Color *color2;
const guchar *src;
guchar *dest;
gint row, col;
gint pixel;
gulong *index_used_count = quantobj->index_used_count;
gboolean has_alpha;
gboolean alpha_dither = quantobj->want_alpha_dither;
gint offsetx, offsety;
gpointer pr;
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, new_tiles,
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
for (pr = pixel_regions_register (2, &srcPR, &destPR);
pr != NULL;
pr = pixel_regions_process (pr))
{
src = srcPR.data;
dest = destPR.data;
for (row = 0; row < srcPR.h; row++)
{
for (col = 0; col < srcPR.w; col++)
{
const int dmval =
DM[(col+offsetx+srcPR.x) & DM_WIDTHMASK]
[(row+offsety+srcPR.y) & DM_HEIGHTMASK];
/* get pixel value and index into the cache */
pixel = src[GRAY_PIX];
cachep = &histogram[pixel];
/* If we have not seen this color before, find nearest colormap entry */
/* and update the cache */
if (*cachep == 0)
fill_inverse_cmap_gray (quantobj, histogram, pixel);
pixval1 = *cachep - 1;
color1 = &quantobj->cmap[pixval1];
if (quantobj->actual_number_of_colors > 2) {
const int re = src[GRAY_PIX] - (int)color1->red;
int RV = src[GRAY_PIX] + re;
do {
const gint R = CLAMP0255(RV);
cachep = &histogram[R];
/* If we have not seen this color before, find nearest
colormap entry and update the cache */
if (*cachep == 0) {
fill_inverse_cmap_gray (quantobj, histogram, R);
}
pixval2 = *cachep - 1;
RV += re;
} while((pixval1 == pixval2) &&
(! (RV>255 || RV<0) ) &&
re);
} else {
/* not enough colours to bother looking for an 'alternative'
colour (we may fail to do so anyway), so decide that
the alternative colour is simply the other cmap entry. */
pixval2 = (pixval1 + 1) %
(quantobj->actual_number_of_colors);
}
/* always deterministically sort pixval1 and pixval2, to
avoid artifacts in the dither range due to inverting our
relative colour viewpoint -- most obvious in 1-bit dither. */
if (pixval1 > pixval2) {
gint tmpval = pixval1;
pixval1 = pixval2;
pixval2 = tmpval;
color1 = &quantobj->cmap[pixval1];
}
color2 = &quantobj->cmap[pixval2];
err1 = ABS(color1->red - src[GRAY_PIX]);
err2 = ABS(color2->red - src[GRAY_PIX]);
if (err1 || err2) {
const int proportion2 = (256 * 255 * err2) / (err1 + err2);
if ((dmval * 256) > proportion2) {
pixval1 = pixval2; /* use color2 instead of color1*/
}
}
if (has_alpha)
{
gboolean transparent = FALSE;
if (alpha_dither)
{
if ((src[ALPHA_G_PIX] << 6) < (255 * dmval))
transparent = TRUE;
}
else
{
if (src[ALPHA_G_PIX] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
}
else
{
dest[ALPHA_I_PIX] = 255;
index_used_count[dest[INDEXED_PIX] = pixval1]++;
}
}
else
{
/* Now emit the colormap index for this cell, barfbarf */
index_used_count[dest[INDEXED_PIX] = pixval1]++;
}
src += srcPR.bytes;
dest += destPR.bytes;
}
}
}
}
static void
median_cut_pass2_no_dither_rgb (QuantizeObj *quantobj,
GimpLayer *layer,
TileManager *new_tiles)
{
PixelRegion srcPR, destPR;
CFHistogram histogram = quantobj->histogram;
ColorFreq *cachep;
const guchar *src;
guchar *dest;
gint R, G, B;
gint row, col;
gboolean has_alpha;
gpointer pr;
gint red_pix = RED_PIX;
gint green_pix = GREEN_PIX;
gint blue_pix = BLUE_PIX;
gint alpha_pix = ALPHA_PIX;
gboolean alpha_dither = quantobj->want_alpha_dither;
gint offsetx, offsety;
gulong *index_used_count = quantobj->index_used_count;
glong total_size = 0;
glong layer_size;
gint count = 0;
gint nth_layer = quantobj->nth_layer;
gint n_layers = quantobj->n_layers;
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
/* In the case of web/mono palettes, we actually force
* grayscale drawables through the rgb pass2 functions
*/
if (gimp_drawable_is_gray (GIMP_DRAWABLE (layer)))
{
red_pix = green_pix = blue_pix = GRAY_PIX;
alpha_pix = ALPHA_G_PIX;
}
has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, new_tiles,
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
layer_size = (gimp_item_width (GIMP_ITEM (layer)) *
gimp_item_height (GIMP_ITEM (layer)));
for (pr = pixel_regions_register (2, &srcPR, &destPR);
pr != NULL;
pr = pixel_regions_process (pr), count++)
{
src = srcPR.data;
dest = destPR.data;
total_size += srcPR.h * srcPR.w;
for (row = 0; row < srcPR.h; row++)
{
for (col = 0; col < srcPR.w; col++)
{
if (has_alpha)
{
gboolean transparent = FALSE;
if (alpha_dither)
{
gint dither_x = (col+offsetx+srcPR.x) & DM_WIDTHMASK;
gint dither_y = (row+offsety+srcPR.y) & DM_HEIGHTMASK;
if ((src[alpha_pix]) < DM[dither_x][dither_y])
transparent = TRUE;
}
else
{
if (src[alpha_pix] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
goto next_pixel;
}
else
{
dest[ALPHA_I_PIX] = 255;
}
}
/* get pixel value and index into the cache */
rgb_to_lin(src[red_pix], src[green_pix], src[blue_pix],
&R, &G, &B);
cachep = HIST_LIN(histogram,R,G,B);
/* If we have not seen this color before, find nearest
colormap entry and update the cache */
if (*cachep == 0)
fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);
/* Now emit the colormap index for this cell, barfbarf */
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
next_pixel:
src += srcPR.bytes;
dest += destPR.bytes;
}
}
if (quantobj->progress && (count % 16 == 0))
gimp_progress_set_value (quantobj->progress,
(nth_layer + ((gdouble) total_size)/
layer_size) / (gdouble) n_layers);
}
}
static void
median_cut_pass2_fixed_dither_rgb (QuantizeObj *quantobj,
GimpLayer *layer,
TileManager *new_tiles)
{
PixelRegion srcPR, destPR;
CFHistogram histogram = quantobj->histogram;
ColorFreq *cachep;
gint pixval1=0, pixval2=0;
Color* color1;
Color* color2;
const guchar *src;
guchar *dest;
gint R, G, B;
gint err1,err2;
gint row, col;
gboolean has_alpha;
gpointer pr;
gint red_pix = RED_PIX;
gint green_pix = GREEN_PIX;
gint blue_pix = BLUE_PIX;
gint alpha_pix = ALPHA_PIX;
gboolean alpha_dither = quantobj->want_alpha_dither;
gint offsetx, offsety;
gulong *index_used_count = quantobj->index_used_count;
glong total_size = 0;
glong layer_size;
gint count = 0;
gint nth_layer = quantobj->nth_layer;
gint n_layers = quantobj->n_layers;
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
/* In the case of web/mono palettes, we actually force
* grayscale drawables through the rgb pass2 functions
*/
if (gimp_drawable_is_gray (GIMP_DRAWABLE (layer)))
{
red_pix = green_pix = blue_pix = GRAY_PIX;
alpha_pix = ALPHA_G_PIX;
}
has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, new_tiles,
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
layer_size = (gimp_item_width (GIMP_ITEM (layer)) *
gimp_item_height (GIMP_ITEM (layer)));
for (pr = pixel_regions_register (2, &srcPR, &destPR);
pr != NULL;
pr = pixel_regions_process (pr), count++)
{
src = srcPR.data;
dest = destPR.data;
total_size += srcPR.h * srcPR.w;
for (row = 0; row < srcPR.h; row++)
{
for (col = 0; col < srcPR.w; col++)
{
const int dmval =
DM[(col+offsetx+srcPR.x) & DM_WIDTHMASK]
[(row+offsety+srcPR.y) & DM_HEIGHTMASK];
if (has_alpha)
{
gboolean transparent = FALSE;
if (alpha_dither)
{
if ((src[alpha_pix] << 6) < (255*dmval))
transparent = TRUE;
}
else
{
if (src[alpha_pix] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
goto next_pixel;
}
else
{
dest[ALPHA_I_PIX] = 255;
}
}
/* get pixel value and index into the cache */
rgb_to_lin(src[red_pix], src[green_pix], src[blue_pix],
&R, &G, &B);
cachep = HIST_LIN(histogram,R,G,B);
/* If we have not seen this color before, find nearest
colormap entry and update the cache */
if (*cachep == 0)
fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);
/* We now try to find a colour which, when mixed in some fashion
with the closest match, yields something closer to the
desired colour. We do this by repeatedly extrapolating the
colour vector from one to the other until we find another
colour cell. Then we assess the distance of both mixer
colours from the intended colour to determine their relative
probabilities of being chosen. */
pixval1 = *cachep - 1;
color1 = &quantobj->cmap[pixval1];
if (quantobj->actual_number_of_colors > 2) {
const int re = src[red_pix] - (int)color1->red;
const int ge = src[green_pix] - (int)color1->green;
const int be = src[blue_pix] - (int)color1->blue;
int RV = src[red_pix] + re;
int GV = src[green_pix] + ge;
int BV = src[blue_pix] + be;
do {
rgb_to_lin((CLAMP0255(RV)),
(CLAMP0255(GV)),
(CLAMP0255(BV)),
&R, &G, &B);
cachep = HIST_LIN(histogram,R,G,B);
/* If we have not seen this color before, find nearest
colormap entry and update the cache */
if (*cachep == 0) {
fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);
}
pixval2 = *cachep - 1;
RV += re; GV += ge; BV += be;
} while((pixval1 == pixval2) &&
(!( (RV>255 || RV<0) || (GV>255 || GV<0) || (BV>255 || BV<0) )) &&
(re || ge || be));
}
if (quantobj->actual_number_of_colors <= 2
/* || pixval1 == pixval2 */) {
/* not enough colours to bother looking for an 'alternative'
colour (we may fail to do so anyway), so decide that
the alternative colour is simply the other cmap entry. */
pixval2 = (pixval1 + 1) %
(quantobj->actual_number_of_colors);
}
/* always deterministically sort pixval1 and pixval2, to
avoid artifacts in the dither range due to inverting our
relative colour viewpoint -- most obvious in 1-bit dither. */
if (pixval1 > pixval2) {
gint tmpval = pixval1;
pixval1 = pixval2;
pixval2 = tmpval;
color1 = &quantobj->cmap[pixval1];
}
color2 = &quantobj->cmap[pixval2];
/* now figure out the relative probabilites of choosing
either of our candidates. */
#define DISTP(R1,G1,B1,R2,G2,B2,D) do {D = sqrt( 30*SQR((R1)-(R2)) + \
59*SQR((G1)-(G2)) + \
11*SQR((B1)-(B2)) ); }while(0)
#define LIN_DISTP(R1,G1,B1,R2,G2,B2,D) do { \
int spacer1, spaceg1, spaceb1; \
int spacer2, spaceg2, spaceb2; \
rgb_to_unshifted_lin(R1,G1,B1, &spacer1, &spaceg1, &spaceb1); \
rgb_to_unshifted_lin(R2,G2,B2, &spacer2, &spaceg2, &spaceb2); \
D = sqrt(R_SCALE * SQR((spacer1)-(spacer2)) + \
G_SCALE * SQR((spaceg1)-(spaceg2)) + \
B_SCALE * SQR((spaceb1)-(spaceb2))); \
} while(0)
/* although LIN_DISTP is more correct, DISTP is much faster and
barely distinguishable. */
DISTP(color1->red, color1->green, color1->blue,
src[red_pix], src[green_pix], src[blue_pix],
err1);
DISTP(color2->red, color2->green, color2->blue,
src[red_pix], src[green_pix], src[blue_pix],
err2);
if (err1 || err2) {
const int proportion2 = (255 * err2) / (err1 + err2);
if (dmval > proportion2) {
pixval1 = pixval2; /* use color2 instead of color1*/
}
}
/* Now emit the colormap index for this cell, barfbarf */
index_used_count[dest[INDEXED_PIX] = pixval1]++;
next_pixel:
src += srcPR.bytes;
dest += destPR.bytes;
}
}
if (quantobj->progress && (count % 16 == 0))
gimp_progress_set_value (quantobj->progress,
(nth_layer + ((gdouble) total_size)/
layer_size) / (gdouble) n_layers);
}
}
static void
median_cut_pass2_nodestruct_dither_rgb (QuantizeObj *quantobj,
GimpLayer *layer,
TileManager *new_tiles)
{
PixelRegion srcPR, destPR;
const guchar *src;
guchar *dest;
gint row, col;
gboolean has_alpha;
gboolean alpha_dither = quantobj->want_alpha_dither;
gpointer pr;
gint red_pix = RED_PIX;
gint green_pix = GREEN_PIX;
gint blue_pix = BLUE_PIX;
gint alpha_pix = ALPHA_PIX;
gint i;
gint lastindex = 0;
gint lastred = -1;
gint lastgreen = -1;
gint lastblue = -1;
gint offsetx, offsety;
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, new_tiles, 0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
for (pr = pixel_regions_register (2, &srcPR, &destPR);
pr != NULL;
pr = pixel_regions_process (pr))
{
src = srcPR.data;
dest = destPR.data;
for (row = 0; row < srcPR.h; row++)
{
for (col = 0; col < srcPR.w; col++)
{
gboolean transparent = FALSE;
if (has_alpha)
{
if (alpha_dither)
{
gint dither_x = (col + srcPR.x + offsetx) & DM_WIDTHMASK;
gint dither_y = (row + srcPR.y + offsety) & DM_HEIGHTMASK;
if ((src[alpha_pix]) < DM[dither_x][dither_y])
transparent = TRUE;
}
else
{
if (src[alpha_pix] < 128)
transparent = TRUE;
}
}
if (! transparent)
{
if ((lastred == src[red_pix]) &&
(lastgreen == src[green_pix]) &&
(lastblue == src[blue_pix]))
{
/* same pixel colour as last time */
dest[INDEXED_PIX] = lastindex;
if (has_alpha)
dest[ALPHA_I_PIX] = 255;
}
else
{
for (i = 0 ;
i < quantobj->actual_number_of_colors;
i++)
{
if (
(quantobj->cmap[i].green == src[green_pix]) &&
(quantobj->cmap[i].red == src[red_pix]) &&
(quantobj->cmap[i].blue == src[blue_pix])
)
{
lastred = src[red_pix];
lastgreen = src[green_pix];
lastblue = src[blue_pix];
lastindex = i;
goto got_colour;
}
}
g_error ("Non-existant colour was expected to "
"be in non-destructive colourmap.");
got_colour:
dest[INDEXED_PIX] = lastindex;
if (has_alpha)
dest[ALPHA_I_PIX] = 255;
}
}
else
{ /* have alpha, and transparent */
dest[ALPHA_I_PIX] = 0;
}
src += srcPR.bytes;
dest += destPR.bytes;
}
}
}
}
/*
* Initialize the error-limiting transfer function (lookup table).
* The raw F-S error computation can potentially compute error values of up to
* +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
* much less, otherwise obviously wrong pixels will be created. (Typical
* effects include weird fringes at color-area boundaries, isolated bright
* pixels in a dark area, etc.) The standard advice for avoiding this problem
* is to ensure that the "corners" of the color cube are allocated as output
* colors; then repeated errors in the same direction cannot cause cascading
* error buildup. However, that only prevents the error from getting
* completely out of hand; Aaron Giles reports that error limiting improves
* the results even with corner colors allocated.
* A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
* well, but the smoother transfer function used below is even better. Thanks
* to Aaron Giles for this idea.
*/
static gint *
init_error_limit (const int error_freedom)
/* Allocate and fill in the error_limiter table */
{
gint *table;
gint in, out;
/* #define STEPSIZE 16 */
/* #define STEPSIZE 200 */
table = g_new (gint, 255 * 2 + 1);
table += 255; /* so we can index -255 ... +255 */
if (error_freedom == 0)
{
/* Coarse function, much bleeding. */
const gint STEPSIZE = 190;
for (in = 0; in < STEPSIZE; in++)
{
table[in] = in;
table[-in] = -in;
}
for (; in <= 255; in++)
{
table[in] = STEPSIZE;
table[-in] = -STEPSIZE;
}
return (table);
}
else
{
/* Smooth function, bleeding more constrained */
const gint STEPSIZE = 24;
/* Map errors 1:1 up to +- STEPSIZE */
out = 0;
for (in = 0; in < STEPSIZE; in++, out++)
{
table[in] = out;
table[-in] = -out;
}
/* Map errors 1:2 up to +- 3*STEPSIZE */
for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1)
{
table[in] = out;
table[-in] = -out;
}
/* Clamp the rest to final out value (which is STEPSIZE*2) */
for (; in <= 255; in++)
{
table[in] = out;
table[-in] = -out;
}
return table;
}
}
/*
* Map some rows of pixels to the output colormapped representation.
* Perform floyd-steinberg dithering.
*/
static void
median_cut_pass2_fs_dither_gray (QuantizeObj *quantobj,
GimpLayer *layer,
TileManager *new_tiles)
{
PixelRegion srcPR, destPR;
CFHistogram histogram = quantobj->histogram;
ColorFreq *cachep;
Color *color;
gint *error_limiter;
const gshort *fs_err1, *fs_err2;
const gshort *fs_err3, *fs_err4;
const guchar *range_limiter;
gint src_bytes, dest_bytes;
const guchar *src;
guchar *dest;
guchar *src_buf, *dest_buf;
gint *next_row, *prev_row;
gint *nr, *pr;
gint *tmp;
gint pixel;
gint pixele;
gint row, col;
gint index;
gint step_dest, step_src;
gint odd_row;
gboolean has_alpha;
gint offsetx, offsety;
gboolean alpha_dither = quantobj->want_alpha_dither;
gint width, height;
gulong *index_used_count = quantobj->index_used_count;
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, new_tiles, 0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
src_bytes = GIMP_DRAWABLE (layer)->bytes;
dest_bytes = tile_manager_bpp (new_tiles);
width = gimp_item_width (GIMP_ITEM (layer));
height = gimp_item_height (GIMP_ITEM (layer));
error_limiter = init_error_limit (quantobj->error_freedom);
range_limiter = range_array + 256;
src_buf = g_malloc (width * src_bytes);
dest_buf = g_malloc (width * dest_bytes);
next_row = g_new (gint, width + 2);
prev_row = g_new0 (gint, width + 2);
fs_err1 = floyd_steinberg_error1 + 511;
fs_err2 = floyd_steinberg_error2 + 511;
fs_err3 = floyd_steinberg_error3 + 511;
fs_err4 = floyd_steinberg_error4 + 511;
odd_row = 0;
for (row = 0; row < height; row++)
{
pixel_region_get_row (&srcPR, 0, row, width, src_buf, 1);
src = src_buf;
dest = dest_buf;
nr = next_row;
pr = prev_row + 1;
if (odd_row)
{
step_dest = -dest_bytes;
step_src = -src_bytes;
src += (width * src_bytes) - src_bytes;
dest += (width * dest_bytes) - dest_bytes;
nr += width + 1;
pr += width;
*(nr - 1) = 0;
}
else
{
step_dest = dest_bytes;
step_src = src_bytes;
*(nr + 1) = 0;
}
*nr = 0;
for (col = 0; col < width; col++)
{
pixel = range_limiter[src[GRAY_PIX] + error_limiter[*pr]];
cachep = &histogram[pixel];
/* If we have not seen this color before, find nearest colormap entry */
/* and update the cache */
if (*cachep == 0)
fill_inverse_cmap_gray (quantobj, histogram, pixel);
if (has_alpha)
{
gboolean transparent = FALSE;
if (odd_row)
{
if (alpha_dither)
{
gint dither_x = ((width-col)+offsetx-1) & DM_WIDTHMASK;
gint dither_y = (row+offsety) & DM_HEIGHTMASK;
if ((src[ALPHA_G_PIX]) < DM[dither_x][dither_y])
transparent = TRUE;
}
else
{
if (src[ALPHA_G_PIX] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
pr--;
nr--;
*(nr - 1) = 0;
goto next_pixel;
}
else
{
dest[ALPHA_I_PIX] = 255;
}
}
else
{
if (alpha_dither)
{
gint dither_x = (col+offsetx) & DM_WIDTHMASK;
gint dither_y = (row+offsety) & DM_HEIGHTMASK;
if ((src[ALPHA_G_PIX]) < DM[dither_x][dither_y])
transparent = TRUE;
}
else
{
if (src[ALPHA_G_PIX] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
pr++;
nr++;
*(nr + 1) = 0;
goto next_pixel;
}
else
{
dest[ALPHA_I_PIX] = 255;
}
}
}
index = *cachep - 1;
index_used_count[dest[INDEXED_PIX] = index]++;
color = &quantobj->cmap[index];
pixele = pixel - color->red;
if (odd_row)
{
*(--pr) += fs_err1[pixele];
*nr-- += fs_err2[pixele];
*nr += fs_err3[pixele];
*(nr-1) = fs_err4[pixele];
}
else
{
*(++pr) += fs_err1[pixele];
*nr++ += fs_err2[pixele];
*nr += fs_err3[pixele];
*(nr+1) = fs_err4[pixele];
}
next_pixel:
dest += step_dest;
src += step_src;
}
tmp = next_row;
next_row = prev_row;
prev_row = tmp;
odd_row = !odd_row;
pixel_region_set_row (&destPR, 0, row, width, dest_buf);
}
g_free (error_limiter - 255); /* good lord. */
g_free (next_row);
g_free (prev_row);
g_free (src_buf);
g_free (dest_buf);
}
static void
median_cut_pass2_rgb_init (QuantizeObj *quantobj)
{
int i;
zero_histogram_rgb (quantobj->histogram);
/* Mark all indices as currently unused */
memset (quantobj->index_used_count, 0, 256 * sizeof (unsigned long));
/* Make a version of our discovered colourmap in linear space */
for (i=0; i<quantobj->actual_number_of_colors; i++)
{
rgb_to_unshifted_lin(quantobj->cmap[i].red,
quantobj->cmap[i].green,
quantobj->cmap[i].blue,
&quantobj->clin[i].red,
&quantobj->clin[i].green,
&quantobj->clin[i].blue);
}
}
static void
median_cut_pass2_gray_init (QuantizeObj *quantobj)
{
zero_histogram_gray (quantobj->histogram);
/* Mark all indices as currently unused */
memset (quantobj->index_used_count, 0, 256 * sizeof(unsigned long));
}
static void
median_cut_pass2_fs_dither_rgb (QuantizeObj *quantobj,
GimpLayer *layer,
TileManager *new_tiles)
{
PixelRegion srcPR, destPR;
CFHistogram histogram = quantobj->histogram;
ColorFreq *cachep;
Color *color;
gint *error_limiter;
const gshort *fs_err1, *fs_err2;
const gshort *fs_err3, *fs_err4;
const guchar *range_limiter;
gint src_bytes, dest_bytes;
const guchar *src;
guchar *dest;
guchar *src_buf, *dest_buf;
gint *red_n_row, *red_p_row;
gint *grn_n_row, *grn_p_row;
gint *blu_n_row, *blu_p_row;
gint *rnr, *rpr;
gint *gnr, *gpr;
gint *bnr, *bpr;
gint *tmp;
gint re, ge, be;
gint row, col;
gint index;
gint step_dest, step_src;
gint odd_row;
gboolean has_alpha;
gint width, height;
gint red_pix = RED_PIX;
gint green_pix = GREEN_PIX;
gint blue_pix = BLUE_PIX;
gint alpha_pix = ALPHA_PIX;
gint offsetx, offsety;
gboolean alpha_dither = quantobj->want_alpha_dither;
gulong *index_used_count = quantobj->index_used_count;
gint global_rmax = 0, global_rmin = G_MAXINT;
gint global_gmax = 0, global_gmin = G_MAXINT;
gint global_bmax = 0, global_bmin = G_MAXINT;
gint nth_layer = quantobj->nth_layer;
gint n_layers = quantobj->n_layers;
gimp_item_offsets (GIMP_ITEM (layer), &offsetx, &offsety);
/* In the case of web/mono palettes, we actually force
* grayscale drawables through the rgb pass2 functions
*/
if (gimp_drawable_is_gray (GIMP_DRAWABLE (layer)))
red_pix = green_pix = blue_pix = GRAY_PIX;
has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));
pixel_region_init (&srcPR, gimp_drawable_get_tiles (GIMP_DRAWABLE (layer)),
0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
FALSE);
pixel_region_init (&destPR, new_tiles, 0, 0,
gimp_item_width (GIMP_ITEM (layer)),
gimp_item_height (GIMP_ITEM (layer)),
TRUE);
src_bytes = GIMP_DRAWABLE(layer)->bytes;
dest_bytes = tile_manager_bpp (new_tiles);
width = gimp_item_width (GIMP_ITEM (layer));
height = gimp_item_height (GIMP_ITEM (layer));
error_limiter = init_error_limit (quantobj->error_freedom);
range_limiter = range_array + 256;
/* find the bounding box of the palette colours --
we use this for hard-clamping our error-corrected
values so that we can't continuously accelerate outside
of our attainable gamut, which looks icky. */
for (index = 0; index < quantobj->actual_number_of_colors; index++)
{
global_rmax = MAX(global_rmax, quantobj->clin[index].red);
global_rmin = MIN(global_rmin, quantobj->clin[index].red);
global_gmax = MAX(global_gmax, quantobj->clin[index].green);
global_gmin = MIN(global_gmin, quantobj->clin[index].green);
global_bmax = MAX(global_bmax, quantobj->clin[index].blue);
global_bmin = MIN(global_bmin, quantobj->clin[index].blue);
}
src_buf = g_malloc (width * src_bytes);
dest_buf = g_malloc (width * dest_bytes);
red_n_row = g_new (gint, width + 2);
red_p_row = g_new0 (gint, width + 2);
grn_n_row = g_new (gint, width + 2);
grn_p_row = g_new0 (gint, width + 2);
blu_n_row = g_new (gint, width + 2);
blu_p_row = g_new0 (gint, width + 2);
fs_err1 = floyd_steinberg_error1 + 511;
fs_err2 = floyd_steinberg_error2 + 511;
fs_err3 = floyd_steinberg_error3 + 511;
fs_err4 = floyd_steinberg_error4 + 511;
odd_row = 0;
for (row = 0; row < height; row++)
{
pixel_region_get_row (&srcPR, 0, row, width, src_buf, 1);
src = src_buf;
dest = dest_buf;
rnr = red_n_row;
gnr = grn_n_row;
bnr = blu_n_row;
rpr = red_p_row + 1;
gpr = grn_p_row + 1;
bpr = blu_p_row + 1;
if (odd_row)
{
step_dest = -dest_bytes;
step_src = -src_bytes;
src += (width * src_bytes) - src_bytes;
dest += (width * dest_bytes) - dest_bytes;
rnr += width + 1;
gnr += width + 1;
bnr += width + 1;
rpr += width;
gpr += width;
bpr += width;
*(rnr - 1) = *(gnr - 1) = *(bnr - 1) = 0;
}
else
{
step_dest = dest_bytes;
step_src = src_bytes;
*(rnr + 1) = *(gnr + 1) = *(bnr + 1) = 0;
}
*rnr = *gnr = *bnr = 0;
for (col = 0; col < width; col++)
{
if (has_alpha)
{
gboolean transparent = FALSE;
if (odd_row)
{
if (alpha_dither)
{
gint dither_x = ((width-col)+offsetx-1) & DM_WIDTHMASK;
gint dither_y = (row+offsety) & DM_HEIGHTMASK;
if ((src[alpha_pix]) < DM[dither_x][dither_y])
transparent = TRUE;
}
else
{
if (src[alpha_pix] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
rpr--; gpr--; bpr--;
rnr--; gnr--; bnr--;
*(rnr - 1) = *(gnr - 1) = *(bnr - 1) = 0;
goto next_pixel;
}
else
{
dest[ALPHA_I_PIX] = 255;
}
}
else
{
if (alpha_dither)
{
gint dither_x = (col+offsetx) & DM_WIDTHMASK;
gint dither_y = (row+offsety) & DM_HEIGHTMASK;
if ((src[alpha_pix]) < DM[dither_x][dither_y])
transparent = TRUE;
}
else
{
if (src[alpha_pix] <= 127)
transparent = TRUE;
}
if (transparent)
{
dest[ALPHA_I_PIX] = 0;
rpr++; gpr++; bpr++;
rnr++; gnr++; bnr++;
*(rnr + 1) = *(gnr + 1) = *(bnr + 1) = 0;
goto next_pixel;
}
else
{
dest[ALPHA_I_PIX] = 255;
}
}
}
#if 0
/* hmm. */
r = range_limiter[src[red_pix] + error_limiter[*rpr]];
g = range_limiter[src[green_pix] + error_limiter[*gpr]];
b = range_limiter[src[blue_pix] + error_limiter[*bpr]];
re = r >> R_SHIFT;
ge = g >> G_SHIFT;
be = b >> B_SHIFT;
rgb_to_lin (r, g, b, &re, &ge, &be);
#endif
rgb_to_unshifted_lin (src[red_pix], src[green_pix], src[blue_pix],
&re, &ge, &be);
/*
re = CLAMP(re, global_rmin, global_rmax);
ge = CLAMP(ge, global_gmin, global_gmax);
be = CLAMP(be, global_bmin, global_bmax);*/
re = range_limiter[re + error_limiter[*rpr]];
ge = range_limiter[ge + error_limiter[*gpr]];
be = range_limiter[be + error_limiter[*bpr]];
cachep = HIST_LIN(histogram,
RSDF(re),
GSDF(ge),
BSDF(be));
/* If we have not seen this color before, find nearest
colormap entry and update the cache */
if (*cachep == 0)
fill_inverse_cmap_rgb (quantobj, histogram,
RSDF(re),
GSDF(ge),
BSDF(be));
index = *cachep - 1;
index_used_count[index]++;
dest[INDEXED_PIX] = index;
/*if (re > global_rmax)
re = (re + 3*global_rmax) / 4;
else if (re < global_rmin)
re = (re + 3*global_rmin) / 4;*/
/* We constrain chroma error extra-hard so that it
doesn't run away and steal the thunder from the
lightness error where all the detail usually is. */
if (ge > global_gmax)
ge = (ge + 3*global_gmax) / 4;
else if (ge < global_gmin)
ge = (ge + 3*global_gmin) / 4;
if (be > global_bmax)
be = (be + 3*global_bmax) / 4;
else if (be < global_bmin)
be = (be + 3*global_bmin) / 4;
color = &quantobj->clin[index];
#if 0
if ((re > 0 && re < 255) /* HMM &&
ge >= 0 && ge <= 255 &&
be >= 0 && be <= 255*/)
{
ge = ge - color->green;
be = be - color->blue;
re = re - color->red;
}
else
{
/* colour pretty much undefined now; nullify error. */
re = ge = be = 0;
}
#endif
if (re <= 0 || re >= 255)
re = ge = be = 0;
else
{
re = re - color->red;
ge = ge - color->green;
be = be - color->blue;
}
if (odd_row)
{
*(--rpr) += fs_err1[re];
*(--gpr) += fs_err1[ge];
*(--bpr) += fs_err1[be];
*rnr-- += fs_err2[re];
*gnr-- += fs_err2[ge];
*bnr-- += fs_err2[be];
*rnr += fs_err3[re];
*gnr += fs_err3[ge];
*bnr += fs_err3[be];
*(rnr-1) = fs_err4[re];
*(gnr-1) = fs_err4[ge];
*(bnr-1) = fs_err4[be];
}
else
{
*(++rpr) += fs_err1[re];
*(++gpr) += fs_err1[ge];
*(++bpr) += fs_err1[be];
*rnr++ += fs_err2[re];
*gnr++ += fs_err2[ge];
*bnr++ += fs_err2[be];
*rnr += fs_err3[re];
*gnr += fs_err3[ge];
*bnr += fs_err3[be];
*(rnr+1) = fs_err4[re];
*(gnr+1) = fs_err4[ge];
*(bnr+1) = fs_err4[be];
}
next_pixel:
dest += step_dest;
src += step_src;
}
tmp = red_n_row;
red_n_row = red_p_row;
red_p_row = tmp;
tmp = grn_n_row;
grn_n_row = grn_p_row;
grn_p_row = tmp;
tmp = blu_n_row;
blu_n_row = blu_p_row;
blu_p_row = tmp;
odd_row = !odd_row;
pixel_region_set_row (&destPR, 0, row, width, dest_buf);
if (quantobj->progress && (row % 16 == 0))
gimp_progress_set_value (quantobj->progress,
(nth_layer + ((gdouble) row) /
height) / (gdouble) n_layers);
}
g_free (error_limiter - 255);
g_free (red_n_row);
g_free (red_p_row);
g_free (grn_n_row);
g_free (grn_p_row);
g_free (blu_n_row);
g_free (blu_p_row);
g_free (src_buf);
g_free (dest_buf);
}
static void
delete_median_cut (QuantizeObj *quantobj)
{
g_free (quantobj->histogram);
g_free (quantobj);
}
void
gimp_image_convert_set_dither_matrix (const guchar *matrix,
gint width,
gint height)
{
gint x;
gint y;
/* if matrix is invalid, restore the default matrix */
if (matrix == NULL || width == 0 || height == 0)
{
matrix = (const guchar *) DM_ORIGINAL;
width = DM_WIDTH;
height = DM_HEIGHT;
}
g_return_if_fail ((DM_WIDTH % width) == 0);
g_return_if_fail ((DM_HEIGHT % height) == 0);
for (y = 0; y < DM_HEIGHT; y++)
{
for (x = 0; x < DM_WIDTH; x++)
{
DM[x][y] = matrix[((x % width) * height) + (y % height)];
}
}
}
/**************************************************************/
static QuantizeObj *
initialize_median_cut (GimpImageBaseType type,
gint num_colors,
GimpConvertDitherType dither_type,
GimpConvertPaletteType palette_type,
gboolean want_alpha_dither,
GimpProgress *progress)
{
QuantizeObj *quantobj;
/* Initialize the data structures */
quantobj = g_new (QuantizeObj, 1);
if (type == GIMP_GRAY && palette_type == GIMP_MAKE_PALETTE)
quantobj->histogram = g_new (ColorFreq, 256);
else
quantobj->histogram = g_new (ColorFreq,
HIST_R_ELEMS * HIST_G_ELEMS * HIST_B_ELEMS);
quantobj->desired_number_of_colors = num_colors;
quantobj->want_alpha_dither = want_alpha_dither;
quantobj->progress = progress;
switch (type)
{
case GIMP_GRAY:
switch (palette_type)
{
case GIMP_MAKE_PALETTE:
quantobj->first_pass = median_cut_pass1_gray;
break;
case GIMP_WEB_PALETTE:
quantobj->first_pass = webpal_pass1;
break;
case GIMP_CUSTOM_PALETTE:
quantobj->first_pass = custompal_pass1;
needs_quantize=TRUE;
break;
case GIMP_MONO_PALETTE:
default:
quantobj->first_pass = monopal_pass1;
}
if (palette_type == GIMP_WEB_PALETTE ||
palette_type == GIMP_CUSTOM_PALETTE)
{
switch (dither_type)
{
case GIMP_NODESTRUCT_DITHER:
default:
g_warning("Uh-oh, bad dither type, W1");
case GIMP_NO_DITHER:
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_no_dither_rgb;
break;
case GIMP_FS_DITHER:
quantobj->error_freedom = 0;
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
break;
case GIMP_FSLOWBLEED_DITHER:
quantobj->error_freedom = 1;
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
break;
case GIMP_FIXED_DITHER:
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_fixed_dither_rgb;
break;
}
}
else
{
switch (dither_type)
{
case GIMP_NODESTRUCT_DITHER:
default:
g_warning("Uh-oh, bad dither type, W2");
case GIMP_NO_DITHER:
quantobj->second_pass_init = median_cut_pass2_gray_init;
quantobj->second_pass = median_cut_pass2_no_dither_gray;
break;
case GIMP_FS_DITHER:
quantobj->error_freedom = 0;
quantobj->second_pass_init = median_cut_pass2_gray_init;
quantobj->second_pass = median_cut_pass2_fs_dither_gray;
break;
case GIMP_FSLOWBLEED_DITHER:
quantobj->error_freedom = 1;
quantobj->second_pass_init = median_cut_pass2_gray_init;
quantobj->second_pass = median_cut_pass2_fs_dither_gray;
break;
case GIMP_FIXED_DITHER:
quantobj->second_pass_init = median_cut_pass2_gray_init;
quantobj->second_pass = median_cut_pass2_fixed_dither_gray;
break;
}
}
break;
case GIMP_RGB:
switch (palette_type)
{
case GIMP_MAKE_PALETTE:
quantobj->first_pass = median_cut_pass1_rgb;
break;
case GIMP_WEB_PALETTE:
quantobj->first_pass = webpal_pass1;
needs_quantize=TRUE;
break;
case GIMP_CUSTOM_PALETTE:
quantobj->first_pass = custompal_pass1;
needs_quantize=TRUE;
break;
case GIMP_MONO_PALETTE:
default:
quantobj->first_pass = monopal_pass1;
}
switch (dither_type)
{
case GIMP_NO_DITHER:
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_no_dither_rgb;
break;
case GIMP_FS_DITHER:
quantobj->error_freedom = 0;
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
break;
case GIMP_FSLOWBLEED_DITHER:
quantobj->error_freedom = 1;
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
break;
case GIMP_NODESTRUCT_DITHER:
quantobj->second_pass_init = NULL;
quantobj->second_pass = median_cut_pass2_nodestruct_dither_rgb;
break;
case GIMP_FIXED_DITHER:
quantobj->second_pass_init = median_cut_pass2_rgb_init;
quantobj->second_pass = median_cut_pass2_fixed_dither_rgb;
break;
}
break;
default:
break;
}
quantobj->delete_func = delete_median_cut;
return quantobj;
}