gimp/plug-ins/common/nlfilt.c

1047 lines
34 KiB
C

/**************************************************
* file: nlfilt/nlfilt.c
*
* Copyright (c) 1997 Eric L. Hernes (erich@rrnet.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software withough specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
/* add any necessary includes */
#include <string.h>
#include <libgimp/gimp.h>
#include <gtk/gtk.h>
#include <plug-ins/megawidget/megawidget.h>
#ifdef __GNUC__
#define inline inline
#else
#define inline
#endif
static mw_preview_t nlfilt_do_preview;
struct Grgb {
guint8 red;
guint8 green;
guint8 blue;
};
struct GRegion {
gint32 x;
gint32 y;
gint32 width;
gint32 height;
};
struct piArgs {
gint32 img;
gint32 drw;
gdouble alpha;
gdouble radius;
gint filter;
};
typedef enum {
filter_alpha_trim,
filter_opt_est,
filter_edge_enhance,
} FilterType;
/* other structure declarations */
static struct mwPreview *thePreview;
/* function protos */
static void query(void);
static void run(char *name, gint nparam, GParam *param,
gint *nretvals, GParam **retvals);
gint pluginCore(struct piArgs *argp);
gint pluginCoreIA(struct piArgs *argp);
static inline gint nlfiltInit(gdouble alpha, gdouble radius,
FilterType filter);
static inline void nlfiltRow(guchar *src, guchar *dst, gint width,
gint Bpp, gint filtno);
GPlugInInfo PLUG_IN_INFO = {
NULL, /* init */
NULL, /* quit */
query, /* query */
run, /* run */
};
MAIN()
static void
query(void){
static GParamDef args[] = {
{ PARAM_INT32, "run_mode", "Interactive, non-interactive" },
{ PARAM_IMAGE, "img", "The Image to Filter" },
{ PARAM_DRAWABLE, "drw", "The Drawable" },
{ PARAM_FLOAT, "alpha", "The amount of the filter to apply" },
{ PARAM_FLOAT, "radius", "The filter radius" },
{ PARAM_INT32, "filter", "The Filter to Run, 0 - alpha trimmed mean; 1 - optimal estimation (alpha controls noise variance); 2 - edge enhancement" },
};
static gint nargs = 6;
static GParamDef *rets = NULL;
static gint nrets = 0;
gimp_install_procedure("plug_in_nlfilt",
"Nonlinear swiss army knife filter",
"This is the pnmnlfilt, in gimp's clothing. See the pnmnlfilt manpage for details.",
"Graeme W. Gill, gimp 0.99 plugin by Eric L. Hernes",
"Graeme W. Gill, Eric L. Hernes",
"1997",
"<Image>/Filters/Image/NL Filter",
"RGB,GRAY",
PROC_PLUG_IN,
nargs, nrets,
args, rets);
}
static void
run(char *name, gint nparam, GParam *param,
gint *nretvals, GParam **retvals){
static GParam rvals[1];
struct piArgs args;
*nretvals = 1;
*retvals = rvals;
/* bzero(&args, sizeof(struct piArgs)); */
memset(&args,(int)0,sizeof(struct piArgs));
args.radius=-1.0;
gimp_get_data("plug_in_nlfilt", &args);
args.img = param[1].data.d_image;
args.drw = param[2].data.d_drawable;
rvals[0].type = PARAM_STATUS;
rvals[0].data.d_status = STATUS_SUCCESS;
switch (param[0].data.d_int32) {
GDrawable *drw;
case RUN_INTERACTIVE:
/* XXX: add code here for interactive running */
if (args.radius == -1) {
args.alpha = (gdouble)0.3;
args.radius = (gdouble)0.3;
args.filter = 0;
}
drw = gimp_drawable_get(args.drw);
thePreview = mw_preview_build(drw);
if (pluginCoreIA(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
} else {
gimp_set_data("plug_in_nlfilt", &args, sizeof(struct piArgs));
}
break;
case RUN_NONINTERACTIVE:
/* XXX: add code here for non-interactive running */
if (nparam != 6) {
rvals[0].data.d_status = STATUS_CALLING_ERROR;
break;
}
args.alpha = param[3].data.d_float;
args.radius = param[4].data.d_float;
args.filter = param[5].data.d_int32;
if (pluginCore(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
break;
}
break;
case RUN_WITH_LAST_VALS:
/* XXX: add code here for last-values running */
if (pluginCore(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
}
break;
}
}
gint pluginCore(struct piArgs *argp) {
GDrawable *drw;
GPixelRgn srcPr, dstPr;
guchar *srcbuf, *dstbuf;
guint width, height, Bpp;
gint filtno, y, rowsize, p_update;
drw = gimp_drawable_get(argp->drw);
width = drw->width;
height = drw->height;
Bpp = drw->bpp;
rowsize = width * Bpp;
p_update = width / 20;
gimp_pixel_rgn_init (&srcPr, drw, 0, 0, width, height, FALSE, FALSE);
gimp_pixel_rgn_init (&dstPr, drw, 0, 0, width, height, TRUE, TRUE);
srcbuf=(guchar*)malloc(width*Bpp*3);
dstbuf=(guchar*)malloc(width*Bpp);
/* bzero(srcbuf, rowsize*3); */
memset(srcbuf,(int)0,(size_t)(rowsize*3));
/* bzero(dstbuf, rowsize); */
memset(dstbuf,(int)0,(size_t)rowsize);
filtno=nlfiltInit(argp->alpha, argp->radius, argp->filter);
gimp_progress_init("NL Filter");
/* first row */
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, 0, width, 3);
bcopy(srcbuf+width*Bpp, srcbuf, rowsize);
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, 0, width);
/* last row */
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, height-3, width, 3);
bcopy(srcbuf+rowsize, srcbuf+rowsize*2, rowsize);
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, height-1, width);
for(y=0 ;y<height-2; y++){
if (y%p_update==0) gimp_progress_update((gdouble)y/(gdouble)height);
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, y, width, 3);
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, y, width);
}
free(srcbuf);
free(dstbuf);
gimp_drawable_flush(drw);
gimp_drawable_merge_shadow (drw->id, TRUE);
gimp_drawable_update(drw->id, 0, 0, width, height);
gimp_displays_flush();
return 0;
}
gint pluginCoreIA(struct piArgs *argp) {
gint retval=-1; /* default to error return */
GtkWidget *dlg;
GtkWidget *frame;
GtkWidget *hbox;
GtkWidget *table;
GtkWidget *preview;
gint runp;
struct mwRadioGroup filter[] = {
{ "Alpha Trimmed Mean", 0 },
{ "Optimal Estimation", 0 },
{ "Edge Enhancement", 0 },
{ NULL, 0 }
};
gchar **argv;
gint argc;
/* Set args */
argc = 1;
argv = g_new(gchar *, 1);
argv[0] = g_strdup("nlfilt");
gtk_init(&argc, &argv);
gtk_rc_parse(gimp_gtkrc());
filter[argp->filter].var = 1;
dlg = mw_app_new("plug_in_nlfilt", "NL Filter", &runp);
hbox = gtk_hbox_new(FALSE, 5);
gtk_container_border_width(GTK_CONTAINER(hbox), 5);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), hbox, TRUE, TRUE, 0);
gtk_widget_show(hbox);
preview = mw_preview_new(hbox, thePreview, &nlfilt_do_preview);
gtk_object_set_data(GTK_OBJECT(preview), "piArgs", argp);
gtk_object_set_data(GTK_OBJECT(preview), "mwRadioGroup", &filter);
nlfilt_do_preview(preview);
mw_radio_group_new(hbox, "Filter", filter);
frame = gtk_frame_new("Parameters");
gtk_frame_set_shadow_type(GTK_FRAME(frame), GTK_SHADOW_ETCHED_IN);
gtk_container_border_width(GTK_CONTAINER(frame), 5);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), frame, FALSE, FALSE, 0);
gtk_widget_show(frame);
table = gtk_table_new(4, 2, FALSE);
gtk_container_border_width(GTK_CONTAINER (table), 5);
gtk_container_add(GTK_CONTAINER(frame), table);
mw_fscale_entry_new(table, "Alpha", 0.0, 1.0, 0.05, 0.1, 0.0,
0, 1, 1, 2, &argp->alpha);
mw_fscale_entry_new(table, "Radius", 0.3333333, 1.0, 0.05, 0.1, 0.0,
0, 1, 2, 3, &argp->radius);
gtk_widget_show(table);
gtk_widget_show(table);
gtk_widget_show(dlg);
gtk_main();
gdk_flush();
argp->filter = mw_radio_result(filter);
if(runp){
#if 0
fprintf(stderr, "running:\n");
fprintf(stderr, "\t(image %d)\n", argp->img);
fprintf(stderr, "\t(drawable %d)\n", argp->drw);
fprintf(stderr, "\t(alpha %f)\n", argp->alpha);
fprintf(stderr, "\t(radius %f)\n", argp->radius);
#endif
return pluginCore(argp);
} else {
return retval;
}
}
static void
nlfilt_do_preview(GtkWidget *w) {
static GtkWidget *theWidget = NULL;
struct piArgs *ap;
struct mwRadioGroup *rgp;
guchar *dst, *c;
gint y, rowsize, filtno;
if(theWidget==NULL){
theWidget=w;
}
ap = gtk_object_get_data(GTK_OBJECT(theWidget), "piArgs");
rgp = gtk_object_get_data(GTK_OBJECT(theWidget), "mwRadioGroup");
ap->filter = mw_radio_result(rgp);
rowsize=thePreview->width*thePreview->bpp;
dst = malloc(rowsize);
c = malloc(rowsize*3);
bcopy(thePreview->bits, c, rowsize);
bcopy(thePreview->bits, c+rowsize, rowsize*2);
filtno = nlfiltInit(ap->alpha, ap->radius, ap->filter);
nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
dst, 0, 0, thePreview->width);
bcopy(thePreview->bits+((thePreview->height-2)*rowsize), c, rowsize*2);
bcopy(thePreview->bits+((thePreview->height-1)*rowsize),
c+(rowsize*2), rowsize);
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
dst, 0, thePreview->height-1, thePreview->width);
free(c);
for(y=0, c=thePreview->bits;y<thePreview->height-2; y++, c+=rowsize){
nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
dst, 0, y, thePreview->width);
}
gtk_widget_draw(theWidget, NULL);
gdk_flush();
free(dst);
}
/* pnmnlfilt.c - 4 in 1 (2 non-linear) filter
** - smooth an anyimage
** - do alpha trimmed mean filtering on an anyimage
** - do optimal estimation smoothing on an anyimage
** - do edge enhancement on an anyimage
**
** Version 1.0
**
** The implementation of an alpha-trimmed mean filter
** is based on the description in IEEE CG&A May 1990
** Page 23 by Mark E. Lee and Richard A. Redner.
**
** The paper recommends using a hexagon sampling region around each
** pixel being processed, allowing an effective sub pixel radius to be
** specified. The hexagon values are sythesised by area sampling the
** rectangular pixels with a hexagon grid. The seven hexagon values
** obtained from the 3x3 pixel grid are used to compute the alpha
** trimmed mean. Note that an alpha value of 0.0 gives a conventional
** mean filter (where the radius controls the contribution of
** surrounding pixels), while a value of 0.5 gives a median filter.
** Although there are only seven values to trim from before finding
** the mean, the algorithm has been extended from that described in
** CG&A by using interpolation, to allow a continuous selection of
** alpha value between and including 0.0 to 0.5 The useful values
** for radius are between 0.3333333 (where the filter will have no
** effect because only one pixel is sampled), to 1.0, where all
** pixels in the 3x3 grid are sampled.
**
** The optimal estimation filter is taken from an article "Converting Dithered
** Images Back to Gray Scale" by Allen Stenger, Dr Dobb's Journal, November
** 1992, and this article references "Digital Image Enhancement andNoise Filtering by
** Use of Local Statistics", Jong-Sen Lee, IEEE Transactions on Pattern Analysis and
** Machine Intelligence, March 1980.
**
** Also borrow the technique used in pgmenhance(1) to allow edge
** enhancement if the alpha value is negative.
**
** Author:
** Graeme W. Gill, 30th Jan 1993
** graeme@labtam.oz.au
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation. This software is provided "as is" without express or
** implied warranty.
*/
/* ************************************************** */
/* Hexagon intersecting square area functions */
/* Compute the area of the intersection of a triangle */
/* and a rectangle */
gdouble triang_area(gdouble, gdouble, gdouble, gdouble, gdouble,
gdouble, gdouble, gdouble, gint);
gdouble rectang_area(gdouble, gdouble, gdouble, gdouble,
gdouble, gdouble, gdouble, gdouble);
gdouble hex_area(gdouble, gdouble, gdouble, gdouble, gdouble);
gint atfilt0(gint *p);
gint atfilt1(gint *p);
gint atfilt2(gint *p);
gint atfilt3(gint *p);
gint atfilt4(gint *p);
gint atfilt5(gint *p);
gint (*atfuncs[6])(gint *) = {
atfilt0,
atfilt1,
atfilt2,
atfilt3,
atfilt4,
atfilt5
};
gint noisevariance; /* global so that pixel processing code can get at it quickly */
#define MXIVAL 255 /* maximum input value */
#define NOIVAL (MXIVAL + 1) /* number of possible input values */
#define SCALEB 8 /* scale bits */
#define SCALE (1 << SCALEB) /* scale factor */
#define MXSVAL (MXIVAL * SCALE) /* maximum scaled values */
#define CSCALEB 2 /* coarse scale bits */
#define CSCALE (1 << CSCALEB) /* coarse scale factor */
#define MXCSVAL (MXIVAL * CSCALE) /* maximum coarse scaled values */
#define NOCSVAL (MXCSVAL + 1) /* number of coarse scaled values */
#define SCTOCSC(x) ((x) >> (SCALEB - CSCALEB)) /* convert from scaled to coarse scaled */
#define CSCTOSC(x) ((x) << (SCALEB - CSCALEB)) /* convert from course scaled to scaled */
#ifndef MAXINT
# define MAXINT 0x7fffffff /* assume this is a 32 bit machine */
#endif
/* round and scale floating point to scaled integer */
#define ROUND(x) ((gint)(((x) * (gdouble)SCALE) + 0.5))
/* round and un-scale scaled integer value */
#define RUNSCALE(x) (((x) + (1 << (SCALEB-1))) >> SCALEB) /* rounded un-scale */
#define UNSCALE(x) ((x) >> SCALEB)
void
nlfiltRow(guchar *src, guchar *dst, gint width, gint Bpp, gint filtno) {
gint x, po, no;
gint pf[9];
guchar *r0, *r1, *r2;
guchar *ip0, *ip1, *ip2, *or;
r0=src;
r1=src+(width*Bpp);
r2=src+(width*Bpp*2);
or=dst;
for (x=(width-1)*Bpp, ip0=r0, ip1=r1, ip2=r2, po=x>0?1:0, no=0;
x>0;
x--, ip0++, ip1++, ip2++, or++, po=(x!=0), no|=1) {
pf[0] = *ip1;
pf[1] = *(ip1-no);
pf[2] = *(ip2-no);
pf[3] = *(ip2);
pf[4] = *(ip2+po);
pf[5] = *(ip1+po);
pf[6] = *(ip0+po);
pf[7] = *(ip0);
pf[8] = *(ip0-no);
*or=(atfuncs[filtno])(pf);
}
}
/* We restrict radius to the values: 0.333333 <= radius <= 1.0 */
/* so that no fewer and no more than a 3x3 grid of pixels around */
/* the pixel in question needs to be read. Given this, we only */
/* need 3 or 4 weightings per hexagon, as follows: */
/* _ _ */
/* Virtical hex: |_|_| 1 2 */
/* |X|_| 0 3 */
/* _ */
/* _ _|_| 1 */
/* Middle hex: |_| 1 Horizontal hex: |X|_| 0 2 */
/* |X| 0 |_| 3 */
/* |_| 2 */
/* all filters */
gint V0[NOIVAL],V1[NOIVAL],V2[NOIVAL],V3[NOIVAL]; /* vertical hex */
gint M0[NOIVAL],M1[NOIVAL],M2[NOIVAL]; /* middle hex */
gint H0[NOIVAL],H1[NOIVAL],H2[NOIVAL],H3[NOIVAL]; /* horizontal hex */
/* alpha trimmed and edge enhancement only */
gint ALFRAC[NOIVAL * 8]; /* fractional alpha divider table */
/* optimal estimation only */
gint AVEDIV[7 * NOCSVAL]; /* divide by 7 to give average value */
gint SQUARE[2 * NOCSVAL]; /* scaled square lookup table */
/* Table initialisation function - return alpha range */
gint
nlfiltInit(gdouble alpha, gdouble radius, FilterType filter) {
gint alpharange; /* alpha range value 0 - 3 */
gdouble meanscale; /* scale for finding mean */
gdouble mmeanscale; /* scale for finding mean - midle hex */
gdouble alphafraction; /* fraction of next largest/smallest
* to subtract from sum
*/
switch (filter) {
case filter_alpha_trim: {
gdouble noinmean;
/* number of elements (out of a possible 7) used in the mean */
noinmean = ((0.5 - alpha) * 12.0) + 1.0;
mmeanscale = meanscale = 1.0/noinmean;
if (alpha == 0.0) { /* mean filter */
alpharange = 0;
alphafraction = 0.0; /* not used */
} else if (alpha < (1.0/6.0)) { /* mean of 5 to 7 middle values */
alpharange = 1;
alphafraction = (7.0 - noinmean)/2.0;
} else if (alpha < (1.0/3.0)) { /* mean of 3 to 5 middle values */
alpharange = 2;
alphafraction = (5.0 - noinmean)/2.0;
} else { /* mean of 1 to 3 middle values */
/* alpha==0.5 => median filter */
alpharange = 3;
alphafraction = (3.0 - noinmean)/2.0;
}
}
break;
case filter_opt_est: {
gint i;
gdouble noinmean = 7.0;
/* edge enhancement function */
alpharange = 5;
/* compute scaled hex values */
mmeanscale=meanscale=1.0;
/* Set up 1:1 division lookup - not used */
alphafraction=1.0/noinmean;
/* estimate of noise variance */
noisevariance = alpha * (gdouble)255;
noisevariance = noisevariance * noisevariance / 8.0;
/* set yp optimal estimation specific stuff */
for (i=0;i<(7*NOCSVAL);i++) { /* divide scaled value by 7 lookup */
AVEDIV[i] = CSCTOSC(i)/7; /* scaled divide by 7 */
}
/* compute square and rescale by
* (val >> (2 * SCALEB + 2)) table
*/
for (i=0;i<(2*NOCSVAL);i++) {
gint val;
/* NOCSVAL offset to cope with -ve input values */
val = CSCTOSC(i - NOCSVAL);
SQUARE[i] = (val * val) >> (2 * SCALEB + 2);
}
}
break;
case filter_edge_enhance: {
if (alpha == 1.0) alpha = 0.99;
alpharange = 4;
/* mean of 7 and scaled by -alpha/(1-alpha) */
meanscale = 1.0 * (-alpha/((1.0 - alpha) * 7.0));
/* middle pixel has 1/(1-alpha) as well */
mmeanscale = 1.0 * (1.0/(1.0 - alpha) + meanscale);
alphafraction = 0.0; /* not used */
}
break;
default:
fprintf(stderr, "unknown filter %d\n", filter);
return -1;
}
/*
* Setup pixel weighting tables -
* note we pre-compute mean division here too.
*/
{
gint i;
gdouble hexhoff,hexvoff;
gdouble tabscale,mtabscale;
gdouble v0,v1,v2,v3,m0,m1,m2,h0,h1,h2,h3;
/* horizontal offset of virtical hex centers */
hexhoff = radius/2;
/* vertical offset of virtical hex centers */
hexvoff = 3.0 * radius/sqrt(12.0);
/*
* scale tables to normalise by hexagon
* area, and number of hexes used in mean
*/
tabscale = meanscale / (radius * hexvoff);
mtabscale = mmeanscale / (radius * hexvoff);
v0 = hex_area(0.0,0.0,hexhoff,hexvoff,radius) * tabscale;
v1 = hex_area(0.0,1.0,hexhoff,hexvoff,radius) * tabscale;
v2 = hex_area(1.0,1.0,hexhoff,hexvoff,radius) * tabscale;
v3 = hex_area(1.0,0.0,hexhoff,hexvoff,radius) * tabscale;
m0 = hex_area(0.0,0.0,0.0,0.0,radius) * mtabscale;
m1 = hex_area(0.0,1.0,0.0,0.0,radius) * mtabscale;
m2 = hex_area(0.0,-1.0,0.0,0.0,radius) * mtabscale;
h0 = hex_area(0.0,0.0,radius,0.0,radius) * tabscale;
h1 = hex_area(1.0,1.0,radius,0.0,radius) * tabscale;
h2 = hex_area(1.0,0.0,radius,0.0,radius) * tabscale;
h3 = hex_area(1.0,-1.0,radius,0.0,radius) * tabscale;
for (i=0; i <= MXIVAL; i++) {
gdouble fi;
fi = (gdouble)i;
V0[i] = ROUND(fi * v0);
V1[i] = ROUND(fi * v1);
V2[i] = ROUND(fi * v2);
V3[i] = ROUND(fi * v3);
M0[i] = ROUND(fi * m0);
M1[i] = ROUND(fi * m1);
M2[i] = ROUND(fi * m2);
H0[i] = ROUND(fi * h0);
H1[i] = ROUND(fi * h1);
H2[i] = ROUND(fi * h2);
H3[i] = ROUND(fi * h3);
}
/* set up alpha fraction lookup table used on big/small */
for (i=0; i < (NOIVAL * 8); i++) {
ALFRAC[i] = ROUND((gdouble)i * alphafraction);
}
}
return alpharange;
}
/* Core pixel processing function - hand it 3x3 pixels and return result. */
/* Mean filter */
gint
atfilt0(gint32 *p) {
gint retv;
/* map to scaled hexagon values */
retv = M0[p[0]] + M1[p[3]] + M2[p[7]];
retv += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
retv += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
retv += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
retv += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
retv += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
retv += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
return UNSCALE(retv);
}
/* Mean of 5 - 7 middle values */
gint
atfilt1(gint32 *p) {
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
gint big,small;
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
/* sum values and also discover the largest and smallest */
big = small = h0;
#define CHECK(xx) \
h0 += xx; \
if (xx > big) \
big = xx; \
else if (xx < small) \
small = xx;
CHECK(h1)
CHECK(h2)
CHECK(h3)
CHECK(h4)
CHECK(h5)
CHECK(h6)
#undef CHECK
/* Compute mean of middle 5-7 values */
return UNSCALE(h0 -ALFRAC[(big + small)>>SCALEB]);
}
/* Mean of 3 - 5 middle values */
gint
atfilt2(gint32 *p) {
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
gint big0,big1,small0,small1;
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
/* sum values and also discover the 2 largest and 2 smallest */
big0 = small0 = h0;
small1 = MAXINT;
big1 = 0;
#define CHECK(xx) \
h0 += xx; \
if (xx > big1) \
{ \
if (xx > big0) \
{ \
big1 = big0; \
big0 = xx; \
} \
else \
big1 = xx; \
} \
if (xx < small1) \
{ \
if (xx < small0) \
{ \
small1 = small0; \
small0 = xx; \
} \
else \
small1 = xx; \
}
CHECK(h1)
CHECK(h2)
CHECK(h3)
CHECK(h4)
CHECK(h5)
CHECK(h6)
#undef CHECK
/* Compute mean of middle 3-5 values */
return UNSCALE(h0 -big0 -small0 -ALFRAC[(big1 + small1)>>SCALEB]);
}
/*
* Mean of 1 - 3 middle values.
* If only 1 value, then this is a median filter.
*/
gint32
atfilt3(gint32 *p) {
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
gint big0,big1,big2,small0,small1,small2;
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
/* sum values and also discover the 3 largest and 3 smallest */
big0 = small0 = h0;
small1 = small2 = MAXINT;
big1 = big2 = 0;
#define CHECK(xx) \
h0 += xx; \
if (xx > big2) \
{ \
if (xx > big1) \
{ \
if (xx > big0) \
{ \
big2 = big1; \
big1 = big0; \
big0 = xx; \
} \
else \
{ \
big2 = big1; \
big1 = xx; \
} \
} \
else \
big2 = xx; \
} \
if (xx < small2) \
{ \
if (xx < small1) \
{ \
if (xx < small0) \
{ \
small2 = small1; \
small1 = small0; \
small0 = xx; \
} \
else \
{ \
small2 = small1; \
small1 = xx; \
} \
} \
else \
small2 = xx; \
}
CHECK(h1)
CHECK(h2)
CHECK(h3)
CHECK(h4)
CHECK(h5)
CHECK(h6)
#undef CHECK
/* Compute mean of middle 1-3 values */
return UNSCALE(h0-big0-big1-small0-small1-ALFRAC[(big2+small2)>>SCALEB]);
}
/* Edge enhancement */
gint
atfilt4(gint *p) {
gint hav;
/* map to scaled hexagon values and compute enhance value */
hav = M0[p[0]] + M1[p[3]] + M2[p[7]];
hav += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
hav += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
hav += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
hav += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
hav += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
hav += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
if (hav < 0)
hav = 0;
hav = UNSCALE(hav);
if (hav > (gdouble)255)
hav = (gdouble)255;
return hav;
}
/* Optimal estimation - do smoothing in inverse proportion */
/* to the local variance. */
/* notice we use the globals noisevariance */
gint
atfilt5(gint *p) {
gint mean,variance,temp;
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
mean = h0 + h1 + h2 + h3 + h4 + h5 + h6;
/* compute scaled mean by dividing by 7 */
mean = AVEDIV[SCTOCSC(mean)];
/* compute scaled variance */
temp = (h1 - mean); variance = SQUARE[NOCSVAL + SCTOCSC(temp)];
/* and rescale to keep */
temp = (h2 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
/* within 32 bit limits */
temp = (h3 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
temp = (h4 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
temp = (h5 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
temp = (h6 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
/* (temp = h0 - mean) */
temp = (h0 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
if (variance != 0) /* avoid possible divide by 0 */
/* optimal estimate */
temp = mean + (variance * temp) / (variance + noisevariance);
else temp = h0;
if (temp < 0)
temp = 0;
temp = RUNSCALE(temp);
if (temp > (gdouble)255) temp = (gdouble)255;
return temp;
}
/* Triangle orientation is per geometric axes (not graphical axies) */
#define NW 0 /* North west triangle /| */
#define NE 1 /* North east triangle |\ */
#define SW 2 /* South west triangle \| */
#define SE 3 /* South east triangle |/ */
#define STH 2
#define EST 1
#define SWAPI(a,b) (t = a, a = -b, b = -t)
/* compute the area of overlap of a hexagon diameter d, */
/* centered at hx,hy, with a unit square of center sx,sy. */
gdouble
hex_area(gdouble sx, gdouble sy, gdouble hx, gdouble hy, gdouble d) {
gdouble hx0,hx1,hx2,hy0,hy1,hy2,hy3;
gdouble sx0,sx1,sy0,sy1;
/* compute square co-ordinates */
sx0 = sx - 0.5;
sy0 = sy - 0.5;
sx1 = sx + 0.5;
sy1 = sy + 0.5;
/* compute hexagon co-ordinates */
hx0 = hx - d/2.0;
hx1 = hx;
hx2 = hx + d/2.0;
hy0 = hy - 0.5773502692 * d; /* d / sqrt(3) */
hy1 = hy - 0.2886751346 * d; /* d / sqrt(12) */
hy2 = hy + 0.2886751346 * d; /* d / sqrt(12) */
hy3 = hy + 0.5773502692 * d; /* d / sqrt(3) */
return
triang_area(sx0,sy0,sx1,sy1,hx0,hy2,hx1,hy3,NW) +
triang_area(sx0,sy0,sx1,sy1,hx1,hy2,hx2,hy3,NE) +
rectang_area(sx0,sy0,sx1,sy1,hx0,hy1,hx2,hy2) +
triang_area(sx0,sy0,sx1,sy1,hx0,hy0,hx1,hy1,SW) +
triang_area(sx0,sy0,sx1,sy1,hx1,hy0,hx2,hy1,SE);
}
gdouble
triang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
gdouble ty0, gdouble tx1, gdouble ty1, gint tt) {
gdouble a,b,c,d;
gdouble lx0,ly0,lx1,ly1;
/* Convert everything to a NW triangle */
if (tt & STH) {
gdouble t;
SWAPI(ry0,ry1);
SWAPI(ty0,ty1);
} if (tt & EST) {
gdouble t;
SWAPI(rx0,rx1);
SWAPI(tx0,tx1);
}
/* Compute overlapping box */
if (tx0 > rx0)
rx0 = tx0;
if (ty0 > ry0)
ry0 = ty0;
if (tx1 < rx1)
rx1 = tx1;
if (ty1 < ry1)
ry1 = ty1;
if (rx1 <= rx0 || ry1 <= ry0)
return 0.0;
/* Need to compute diagonal line intersection with the box */
/* First compute co-efficients to formulas x = a + by and y = c + dx */
b = (tx1 - tx0)/(ty1 - ty0);
a = tx0 - b * ty0;
d = (ty1 - ty0)/(tx1 - tx0);
c = ty0 - d * tx0;
/* compute top or right intersection */
tt = 0;
ly1 = ry1;
lx1 = a + b * ly1;
if (lx1 <= rx0)
return (rx1 - rx0) * (ry1 - ry0);
else if (lx1 > rx1) { /* could be right hand side */
lx1 = rx1;
ly1 = c + d * lx1;
if (ly1 <= ry0)
return (rx1 - rx0) * (ry1 - ry0);
tt = 1; /* right hand side intersection */
}
/* compute left or bottom intersection */
lx0 = rx0;
ly0 = c + d * lx0;
if (ly0 >= ry1)
return (rx1 - rx0) * (ry1 - ry0);
else if (ly0 < ry0) { /* could be right hand side */
ly0 = ry0;
lx0 = a + b * ly0;
if (lx0 >= rx1)
return (rx1 - rx0) * (ry1 - ry0);
tt |= 2; /* bottom intersection */
}
if (tt == 0) { /* top and left intersection */
/* rectangle minus triangle */
return ((rx1 - rx0) * (ry1 - ry0))
- (0.5 * (lx1 - rx0) * (ry1 - ly0));
}
else if (tt == 1) { /* right and left intersection */
return ((rx1 - rx0) * (ly0 - ry0))
+ (0.5 * (rx1 - rx0) * (ly1 - ly0));
} else if (tt == 2) { /* top and bottom intersection */
return ((rx1 - lx1) * (ry1 - ry0))
+ (0.5 * (lx1 - lx0) * (ry1 - ry0));
} else { /* tt == 3 */ /* right and bottom intersection */
/* triangle */
return (0.5 * (rx1 - lx0) * (ly1 - ry0));
}
}
/* Compute rectangle area */
gdouble
rectang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
gdouble ty0, gdouble tx1, gdouble ty1) {
/* Compute overlapping box */
if (tx0 > rx0)
rx0 = tx0;
if (ty0 > ry0)
ry0 = ty0;
if (tx1 < rx1)
rx1 = tx1;
if (ty1 < ry1)
ry1 = ty1;
if (rx1 <= rx0 || ry1 <= ry0)
return 0.0;
return (rx1 - rx0) * (ry1 - ry0);
}
/*
* Local Variables:
* mode: C
* c-auto-newline: t
* c-indent-level: 3
*
* End:
*/
/* end of file: nlfilt/nlfilt.c */