gimp/app/core/gimpcoords-interpolate.c

329 lines
13 KiB
C

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* gimpcoords-interpolate.c
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <glib-object.h>
#include "libgimpmath/gimpmath.h"
#include "core-types.h"
#include "gimpcoords.h"
#include "gimpcoords-interpolate.h"
/* Local helper functions declarations*/
static void gimp_coords_interpolate_bezier_internal (const GimpCoords bezier_pt1,
const GimpCoords bezier_pt2,
const GimpCoords bezier_pt3,
const GimpCoords bezier_pt4,
const gdouble start_t,
const gdouble end_t,
const gdouble precision,
GArray **ret_coords,
GArray **ret_params,
gint depth);
static gdouble gimp_coords_get_catmull_spline_point (gdouble t,
gdouble p0,
gdouble p1,
gdouble p2,
gdouble p3);
/* Functions for bezier subdivision */
void
gimp_coords_interpolate_bezier (const GimpCoords bezier_pt1,
const GimpCoords bezier_pt2,
const GimpCoords bezier_pt3,
const GimpCoords bezier_pt4,
const gdouble precision,
GArray **ret_coords,
GArray **ret_params)
{
gimp_coords_interpolate_bezier_internal (bezier_pt1,
bezier_pt2,
bezier_pt3,
bezier_pt4,
0.0, 1.0,
precision,
ret_coords, ret_params, 10);
}
/* Recursive subdivision helper function */
static void
gimp_coords_interpolate_bezier_internal (const GimpCoords bezier_pt1,
const GimpCoords bezier_pt2,
const GimpCoords bezier_pt3,
const GimpCoords bezier_pt4,
const gdouble start_t,
const gdouble end_t,
const gdouble precision,
GArray **ret_coords,
GArray **ret_params,
gint depth)
{
/*
* beziercoords has to contain four GimpCoords with the four control points
* of the bezier segment. We subdivide it at the parameter 0.5.
*/
GimpCoords subdivided[8];
gdouble middle_t = (start_t + end_t) / 2;
subdivided[0] = bezier_pt1;
subdivided[6] = bezier_pt4;
/* if (!depth) g_printerr ("Hit recursion depth limit!\n"); */
gimp_coords_average (&bezier_pt1, &bezier_pt2, &(subdivided[1]));
gimp_coords_average (&bezier_pt2, &bezier_pt3, &(subdivided[7]));
gimp_coords_average (&bezier_pt3, &bezier_pt4, &(subdivided[5]));
gimp_coords_average (&(subdivided[1]), &(subdivided[7]),
&(subdivided[2]));
gimp_coords_average (&(subdivided[7]), &(subdivided[5]),
&(subdivided[4]));
gimp_coords_average (&(subdivided[2]), &(subdivided[4]),
&(subdivided[3]));
/*
* We now have the coordinates of the two bezier segments in
* subdivided [0-3] and subdivided [3-6]
*/
/*
* Here we need to check, if we have sufficiently subdivided, i.e.
* if the stroke is sufficiently close to a straight line.
*/
if (!depth || gimp_coords_bezier_is_straight (subdivided[0],
subdivided[1],
subdivided[2],
subdivided[3],
precision)) /* 1st half */
{
*ret_coords = g_array_append_vals (*ret_coords, &(subdivided[0]), 3);
if (ret_params)
{
gdouble params[3];
params[0] = start_t;
params[1] = (2 * start_t + middle_t) / 3;
params[2] = (start_t + 2 * middle_t) / 3;
*ret_params = g_array_append_vals (*ret_params, &(params[0]), 3);
}
}
else
{
gimp_coords_interpolate_bezier_internal (subdivided[0],
subdivided[1],
subdivided[2],
subdivided[3],
start_t, (start_t + end_t) / 2,
precision,
ret_coords, ret_params, depth-1);
}
if (!depth || gimp_coords_bezier_is_straight (subdivided[3],
subdivided[4],
subdivided[5],
subdivided[6],
precision)) /* 2nd half */
{
*ret_coords = g_array_append_vals (*ret_coords, &(subdivided[3]), 3);
if (ret_params)
{
gdouble params[3];
params[0] = middle_t;
params[1] = (2 * middle_t + end_t) / 3;
params[2] = (middle_t + 2 * end_t) / 3;
*ret_params = g_array_append_vals (*ret_params, &(params[0]), 3);
}
}
else
{
gimp_coords_interpolate_bezier_internal (subdivided[3],
subdivided[4],
subdivided[5],
subdivided[6],
(start_t + end_t) / 2, end_t,
precision,
ret_coords, ret_params, depth-1);
}
}
/*
* a helper function that determines if a bezier segment is "straight
* enough" to be approximated by a line.
*
* To be more exact, it also checks for the control points to be distributed
* evenly along the line. This makes it easier to reconstruct parameters for
* a given point along the segment.
*
* Needs four GimpCoords in an array.
*/
gboolean
gimp_coords_bezier_is_straight (const GimpCoords bezier_pt1,
const GimpCoords bezier_pt2,
const GimpCoords bezier_pt3,
const GimpCoords bezier_pt4,
gdouble precision)
{
GimpCoords pt1, pt2;
/* calculate the "ideal" positions for the control points */
gimp_coords_mix (2.0 / 3.0, &bezier_pt1,
1.0 / 3.0, &bezier_pt4,
&pt1);
gimp_coords_mix (1.0 / 3.0, &bezier_pt1,
2.0 / 3.0, &bezier_pt4,
&pt2);
/* calculate the deviation of the actual control points */
return (gimp_coords_manhattan_dist (&bezier_pt2, &pt1) < precision &&
gimp_coords_manhattan_dist (&bezier_pt3, &pt2) < precision);
}
/* Functions for camull-rom interpolation */
void
gimp_coords_interpolate_catmull (const GimpCoords catmul_pt1,
const GimpCoords catmul_pt2,
const GimpCoords catmul_pt3,
const GimpCoords catmul_pt4,
gdouble precision,
GArray **ret_coords,
GArray **ret_params)
{
gdouble delta_x, delta_y;
gdouble distance;
gint num_points;
gint n;
GimpCoords past_coords;
GimpCoords start_coords;
GimpCoords end_coords;
GimpCoords future_coords;
delta_x = catmul_pt3.x - catmul_pt2.x;
delta_y = catmul_pt3.y - catmul_pt2.y;
/* Catmull-Rom interpolation requires 4 points.
* Two endpoints plus one more at each end.
*/
past_coords = catmul_pt1;
start_coords = catmul_pt2;
end_coords = catmul_pt3;
future_coords = catmul_pt4;
distance = sqrt (SQR (delta_x) + SQR (delta_y));
num_points = distance / precision;
for (n = 1; n <=num_points; n++)
{
GimpCoords res_coords;
gdouble velocity;
gdouble p = (gdouble) n / num_points;
res_coords.x =
gimp_coords_get_catmull_spline_point (p,
past_coords.x,
start_coords.x,
end_coords.x,
future_coords.x);
res_coords.y =
gimp_coords_get_catmull_spline_point (p,
past_coords.y,
start_coords.y,
end_coords.y,
future_coords.y);
res_coords.pressure =
gimp_coords_get_catmull_spline_point (p,
past_coords.pressure,
start_coords.pressure,
end_coords.pressure,
future_coords.pressure);
res_coords.xtilt =
gimp_coords_get_catmull_spline_point (p,
past_coords.xtilt,
start_coords.xtilt,
end_coords.xtilt,
future_coords.xtilt);
res_coords.ytilt =
gimp_coords_get_catmull_spline_point (p,
past_coords.ytilt,
start_coords.ytilt,
end_coords.ytilt,
future_coords.ytilt);
res_coords.wheel =
gimp_coords_get_catmull_spline_point (p,
past_coords.wheel,
start_coords.wheel,
end_coords.wheel,
future_coords.wheel);
velocity = gimp_coords_get_catmull_spline_point (p,
past_coords.velocity,
start_coords.velocity,
end_coords.velocity,
future_coords.velocity);
res_coords.velocity = CLAMP (velocity, 0.0, 1.0);
g_array_append_val (*ret_coords, res_coords);
if (ret_params)
g_array_append_val (*ret_params, p);
}
}
static gdouble
gimp_coords_get_catmull_spline_point (gdouble t,
gdouble p0,
gdouble p1,
gdouble p2,
gdouble p3)
{
return ((((-t + 2.0) * t - 1.0) * t / 2.0) * p0 +
((((3.0 * t - 5.0) * t) * t + 2.0) / 2.0) * p1 +
(((-3.0 * t + 4.0) * t + 1.0) * t / 2.0) * p2 +
(((t - 1) * t * t) / 2.0) * p3);
}