/* GIMP - The GNU Image Manipulation Program * Copyright (C) 1995 Spencer Kimball and Peter Mattis * * gimpcoords-interpolate.c * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "config.h" #include #include "libgimpmath/gimpmath.h" #include "core-types.h" #include "gimpcoords.h" #include "gimpcoords-interpolate.h" /* Local helper functions declarations*/ static void gimp_coords_interpolate_bezier_internal (const GimpCoords bezier_pt1, const GimpCoords bezier_pt2, const GimpCoords bezier_pt3, const GimpCoords bezier_pt4, const gdouble start_t, const gdouble end_t, const gdouble precision, GArray **ret_coords, GArray **ret_params, gint depth); static gdouble gimp_coords_get_catmull_spline_point (const gdouble t, const gdouble p0, const gdouble p1, const gdouble p2, const gdouble p3); /* Functions for bezier subdivision */ void gimp_coords_interpolate_bezier (const GimpCoords bezier_pt1, const GimpCoords bezier_pt2, const GimpCoords bezier_pt3, const GimpCoords bezier_pt4, const gdouble precision, GArray **ret_coords, GArray **ret_params) { gimp_coords_interpolate_bezier_internal (bezier_pt1, bezier_pt2, bezier_pt3, bezier_pt4, 0.0, 1.0, precision, ret_coords, ret_params, 10); } /* Recursive subdivision helper function */ static void gimp_coords_interpolate_bezier_internal (const GimpCoords bezier_pt1, const GimpCoords bezier_pt2, const GimpCoords bezier_pt3, const GimpCoords bezier_pt4, const gdouble start_t, const gdouble end_t, const gdouble precision, GArray **ret_coords, GArray **ret_params, gint depth) { /* * beziercoords has to contain four GimpCoords with the four control points * of the bezier segment. We subdivide it at the parameter 0.5. */ GimpCoords subdivided[8]; gdouble middle_t = (start_t + end_t) / 2; subdivided[0] = bezier_pt1; subdivided[6] = bezier_pt4; /* if (!depth) g_printerr ("Hit recursion depth limit!\n"); */ gimp_coords_average (&bezier_pt1, &bezier_pt2, &(subdivided[1])); gimp_coords_average (&bezier_pt2, &bezier_pt3, &(subdivided[7])); gimp_coords_average (&bezier_pt3, &bezier_pt4, &(subdivided[5])); gimp_coords_average (&(subdivided[1]), &(subdivided[7]), &(subdivided[2])); gimp_coords_average (&(subdivided[7]), &(subdivided[5]), &(subdivided[4])); gimp_coords_average (&(subdivided[2]), &(subdivided[4]), &(subdivided[3])); /* * We now have the coordinates of the two bezier segments in * subdivided [0-3] and subdivided [3-6] */ /* * Here we need to check, if we have sufficiently subdivided, i.e. * if the stroke is sufficiently close to a straight line. */ if (!depth || gimp_coords_bezier_is_straight (subdivided[0], subdivided[1], subdivided[2], subdivided[3], precision)) /* 1st half */ { *ret_coords = g_array_append_vals (*ret_coords, &(subdivided[0]), 3); if (ret_params) { gdouble params[3]; params[0] = start_t; params[1] = (2 * start_t + middle_t) / 3; params[2] = (start_t + 2 * middle_t) / 3; *ret_params = g_array_append_vals (*ret_params, &(params[0]), 3); } } else { gimp_coords_interpolate_bezier_internal (subdivided[0], subdivided[1], subdivided[2], subdivided[3], start_t, (start_t + end_t) / 2, precision, ret_coords, ret_params, depth-1); } if (!depth || gimp_coords_bezier_is_straight (subdivided[3], subdivided[4], subdivided[5], subdivided[6], precision)) /* 2nd half */ { *ret_coords = g_array_append_vals (*ret_coords, &(subdivided[3]), 3); if (ret_params) { gdouble params[3]; params[0] = middle_t; params[1] = (2 * middle_t + end_t) / 3; params[2] = (middle_t + 2 * end_t) / 3; *ret_params = g_array_append_vals (*ret_params, &(params[0]), 3); } } else { gimp_coords_interpolate_bezier_internal (subdivided[3], subdivided[4], subdivided[5], subdivided[6], (start_t + end_t) / 2, end_t, precision, ret_coords, ret_params, depth-1); } } /* * a helper function that determines if a bezier segment is "straight * enough" to be approximated by a line. * * To be more exact, it also checks for the control points to be distributed * evenly along the line. This makes it easier to reconstruct parameters for * a given point along the segment. * * Needs four GimpCoords in an array. */ gboolean gimp_coords_bezier_is_straight (const GimpCoords bezier_pt1, const GimpCoords bezier_pt2, const GimpCoords bezier_pt3, const GimpCoords bezier_pt4, gdouble precision) { GimpCoords pt1, pt2; /* calculate the "ideal" positions for the control points */ gimp_coords_mix (2.0 / 3.0, &bezier_pt1, 1.0 / 3.0, &bezier_pt4, &pt1); gimp_coords_mix (1.0 / 3.0, &bezier_pt1, 2.0 / 3.0, &bezier_pt4, &pt2); /* calculate the deviation of the actual control points */ return (gimp_coords_manhattan_dist (&bezier_pt2, &pt1) < precision && gimp_coords_manhattan_dist (&bezier_pt3, &pt2) < precision); } /* Functions for camull-rom interpolation */ void gimp_coords_interpolate_catmull (const GimpCoords catmul_pt1, const GimpCoords catmul_pt2, const GimpCoords catmul_pt3, const GimpCoords catmul_pt4, gdouble precision, GArray **ret_coords, GArray **ret_params) { gdouble delta_x, delta_y; gdouble distance; gdouble dir_step; gdouble delta_dir; gint num_points; gint n; GimpCoords past_coords; GimpCoords start_coords; GimpCoords end_coords; GimpCoords future_coords; delta_x = catmul_pt3.x - catmul_pt2.x; delta_y = catmul_pt3.y - catmul_pt2.y; /* Catmull-Rom interpolation requires 4 points. * Two endpoints plus one more at each end. */ past_coords = catmul_pt1; start_coords = catmul_pt2; end_coords = catmul_pt3; future_coords = catmul_pt4; distance = sqrt (SQR (delta_x) + SQR (delta_y)); num_points = distance / precision; delta_dir = end_coords.direction - start_coords.direction; if (delta_dir <= -0.5) delta_dir += 1.0; else if (delta_dir >= 0.5) delta_dir -= 1.0; dir_step = delta_dir / num_points; for (n = 1; n <= num_points; n++) { GimpCoords coords; gdouble velocity; gdouble pressure; gdouble p = (gdouble) n / num_points; coords.x = gimp_coords_get_catmull_spline_point (p, past_coords.x, start_coords.x, end_coords.x, future_coords.x); coords.y = gimp_coords_get_catmull_spline_point (p, past_coords.y, start_coords.y, end_coords.y, future_coords.y); pressure = gimp_coords_get_catmull_spline_point (p, past_coords.pressure, start_coords.pressure, end_coords.pressure, future_coords.pressure); coords.pressure = CLAMP (pressure, 0.0, 1.0); coords.xtilt = gimp_coords_get_catmull_spline_point (p, past_coords.xtilt, start_coords.xtilt, end_coords.xtilt, future_coords.xtilt); coords.ytilt = gimp_coords_get_catmull_spline_point (p, past_coords.ytilt, start_coords.ytilt, end_coords.ytilt, future_coords.ytilt); coords.wheel = gimp_coords_get_catmull_spline_point (p, past_coords.wheel, start_coords.wheel, end_coords.wheel, future_coords.wheel); velocity = gimp_coords_get_catmull_spline_point (p, past_coords.velocity, start_coords.velocity, end_coords.velocity, future_coords.velocity); coords.velocity = CLAMP (velocity, 0.0, 1.0); coords.direction = start_coords.direction + dir_step * n; coords.direction = coords.direction - floor (coords.direction); g_array_append_val (*ret_coords, coords); if (ret_params) g_array_append_val (*ret_params, p); } } static gdouble gimp_coords_get_catmull_spline_point (const gdouble t, const gdouble p0, const gdouble p1, const gdouble p2, const gdouble p3) { return ((((-t + 2.0) * t - 1.0) * t / 2.0) * p0 + ((((3.0 * t - 5.0) * t) * t + 2.0) / 2.0) * p1 + (((-3.0 * t + 4.0) * t + 1.0) * t / 2.0) * p2 + (((t - 1) * t * t) / 2.0) * p3); }