gimp/plug-ins/common/gauss.c

1260 lines
38 KiB
C
Raw Normal View History

/* The GIMP -- an image manipulation program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gtk/gtk.h>
#include <libgimp/gimp.h>
#include <libgimp/gimpui.h>
#include "libgimp/stdplugins-intl.h"
typedef enum
{
BLUR_IIR,
BLUR_RLE
} BlurMethod;
typedef struct
{
gdouble horizontal;
gdouble vertical;
BlurMethod method;
} BlurValues;
/* Declare local functions.
*/
static void query (void);
static void run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn_vals,
GimpParam **return_vals);
static void gauss (GimpDrawable *drawable,
gdouble horizontal,
gdouble vertical,
BlurMethod method,
GtkWidget *preview);
static void update_preview (GtkWidget *preview,
GtkWidget *size);
/*
* Gaussian blur interface
*/
static gboolean gauss_dialog (gint32 image_ID,
GimpDrawable *drawable);
/*
* Gaussian blur helper functions
*/
static void find_constants (gdouble n_p[],
gdouble n_m[],
gdouble d_p[],
gdouble d_m[],
gdouble bd_p[],
gdouble bd_m[],
gdouble std_dev);
static void transfer_pixels (gdouble *src1,
gdouble *src2,
guchar *dest,
gint bytes,
gint width);
static gint * make_curve (gdouble sigma,
gint *length);
static void run_length_encode (guchar *src,
gint *dest,
gint bytes,
gint width);
GimpPlugInInfo PLUG_IN_INFO =
{
NULL, /* init_proc */
NULL, /* quit_proc */
query, /* query_proc */
run, /* run_proc */
};
static BlurValues bvals =
{
5.0, /* x radius */
5.0, /* y radius */
BLUR_IIR
};
MAIN ()
static void
query (void)
{
static GimpParamDef args[] =
{
{ GIMP_PDB_INT32, "run_mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "horizontal", "Horizontal radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_FLOAT, "vertical", "Vertical radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_INT32, "method", "IIR (0) or RLE (1)" }
};
static GimpParamDef args1[] =
{
{ GIMP_PDB_INT32, "run_mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image (unused)" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "radius", "Radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_INT32, "horizontal", "Blur in horizontal direction" },
{ GIMP_PDB_INT32, "vertical", "Blur in vertical direction" }
};
static GimpParamDef args2[] =
{
{ GIMP_PDB_INT32, "run_mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "horizontal", "Horizontal radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_FLOAT, "vertical", "Vertical radius of gaussian blur (in pixels, > 0.0)" }
};
gimp_install_procedure ("plug_in_gauss",
"Applies a gaussian blur to the specified drawable.",
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"Horizontal and vertical blurring can be "
"independently invoked by specifying only one to "
"run. The IIR gaussian blurring works best for "
"large radius values and for images which are not "
"computer-generated.",
"Spencer Kimball & Peter Mattis",
"Spencer Kimball & Peter Mattis",
"1995-1996",
N_("_Gaussian Blur..."),
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args), 0,
args, NULL);
gimp_install_procedure ("plug_in_gauss_iir",
"Applies a gaussian blur to the specified drawable.",
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"Horizontal and vertical blurring can be "
"independently invoked by specifying only one to "
"run. The IIR gaussian blurring works best for "
"large radius values and for images which are not "
"computer-generated.",
"Spencer Kimball & Peter Mattis",
"Spencer Kimball & Peter Mattis",
"1995-1996",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args1), 0,
args1, NULL);
gimp_install_procedure ("plug_in_gauss_iir2",
"Applies a gaussian blur to the specified drawable.",
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"This radius can be specified indepently on for the "
"horizontal and the vertical direction. The IIR "
"gaussian blurring works best for large radius "
"values and for images which are not "
"computer-generated.",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"1995-2000",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args2), 0,
args2, NULL);
gimp_install_procedure ("plug_in_gauss_rle",
"Applies a gaussian blur to the specified drawable.",
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"Horizontal and vertical blurring can be "
"independently invoked by specifying only one to "
"run. The RLE gaussian blurring performs most "
"efficiently on computer-generated images or images "
"with large areas of constant intensity.",
"Spencer Kimball & Peter Mattis",
"Spencer Kimball & Peter Mattis",
"1995-1996",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args1), 0,
args1, NULL);
gimp_install_procedure ("plug_in_gauss_rle2",
"Applies a gaussian blur to the specified drawable.",
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"This radius can be specified indepently on for the "
"horizontal and the vertical direction. The RLE "
"gaussian blurring performs most efficiently on "
"computer-generated images or images with large "
"areas of constant intensity.",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"1995-2000",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args2), 0,
args2, NULL);
gimp_plugin_menu_register ("plug_in_gauss",
N_("<Image>/Filters/Blur"));
}
static void
run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn_vals,
GimpParam **return_vals)
{
static GimpParam values[1];
gint32 image_ID;
GimpDrawable *drawable;
GimpRunMode run_mode;
GimpPDBStatusType status = GIMP_PDB_SUCCESS;
gdouble radius = 0.;
run_mode = param[0].data.d_int32;
INIT_I18N ();
*nreturn_vals = 1;
*return_vals = values;
values[0].type = GIMP_PDB_STATUS;
values[0].data.d_status = status;
/* Get the specified image and drawable */
image_ID = param[1].data.d_image;
drawable = gimp_drawable_get (param[2].data.d_drawable);
if (strcmp (name, "plug_in_gauss") == 0)
{
switch (run_mode)
{
case GIMP_RUN_INTERACTIVE:
/* Possibly retrieve data */
gimp_get_data ("plug_in_gauss", &bvals);
/* First acquire information with a dialog */
if (! gauss_dialog (image_ID, drawable))
return;
break;
case GIMP_RUN_NONINTERACTIVE:
/* Make sure all the arguments are there! */
if (nparams != 6)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
bvals.horizontal = param[3].data.d_float;
bvals.vertical = param[4].data.d_float;
bvals.method = param[5].data.d_int32;
}
if (status == GIMP_PDB_SUCCESS &&
(bvals.horizontal <= 0.0 && bvals.vertical <= 0.0))
status = GIMP_PDB_CALLING_ERROR;
break;
case GIMP_RUN_WITH_LAST_VALS:
/* Possibly retrieve data */
gimp_get_data ("plug_in_gauss", &bvals);
break;
default:
break;
}
}
else if (strcmp (name, "plug_in_gauss_iir") == 0)
{
if (nparams != 6)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
radius = param[3].data.d_float;
bvals.horizontal = (param[4].data.d_int32) ? radius : 0.;
bvals.vertical = (param[5].data.d_int32) ? radius : 0.;
bvals.method = BLUR_IIR;
}
if (radius <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else if (strcmp (name, "plug_in_gauss_iir2") == 0)
{
if (nparams != 5)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
bvals.horizontal = param[3].data.d_float;
bvals.vertical = param[4].data.d_float;
bvals.method = BLUR_IIR;
}
if (bvals.horizontal <= 0.0 && bvals.vertical <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else if (strcmp (name, "plug_in_gauss_rle") == 0)
{
if (nparams != 6)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
radius = param[3].data.d_float;
bvals.horizontal = (param[4].data.d_int32) ? radius : 0.;
bvals.vertical = (param[5].data.d_int32) ? radius : 0.;
bvals.method = BLUR_RLE;
}
if (radius <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else if (strcmp (name, "plug_in_gauss_rle2") == 0)
{
if (nparams != 5)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
bvals.horizontal = param[3].data.d_float;
bvals.vertical = param[4].data.d_float;
bvals.method = BLUR_RLE;
}
if (bvals.horizontal <= 0.0 && bvals.vertical <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
/* Make sure that the drawable is gray or RGB color */
if (gimp_drawable_is_rgb (drawable->drawable_id) ||
gimp_drawable_is_gray (drawable->drawable_id))
{
gimp_progress_init (_("Gaussian Blur..."));
/* set the tile cache size so that the gaussian blur works well */
gimp_tile_cache_ntiles (2 *
(MAX (drawable->width, drawable->height) /
gimp_tile_width () + 1));
/* run the gaussian blur */
gauss (drawable,
bvals.horizontal, bvals.vertical,
bvals.method,
NULL);
/* Store data */
if (run_mode == GIMP_RUN_INTERACTIVE)
gimp_set_data ("plug_in_gauss",
&bvals, sizeof (BlurValues));
if (run_mode != GIMP_RUN_NONINTERACTIVE)
gimp_displays_flush ();
}
else
{
g_message (_("Cannot operate on indexed color images."));
status = GIMP_PDB_EXECUTION_ERROR;
}
gimp_drawable_detach (drawable);
}
values[0].data.d_status = status;
}
static gboolean
gauss_dialog (gint32 image_ID,
GimpDrawable *drawable)
{
GtkWidget *dlg;
GtkWidget *frame;
GtkWidget *size;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *preview;
GimpUnit unit;
gdouble xres;
gdouble yres;
gboolean run;
gimp_ui_init ("gaussian_blur", FALSE);
dlg = gimp_dialog_new (_("Gaussian Blur"), "gaussian_blur",
NULL, 0,
gimp_standard_help_func, "plug-in-gauss",
GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
GTK_STOCK_OK, GTK_RESPONSE_OK,
NULL);
vbox = gtk_vbox_new (FALSE, 12);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 12);
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (dlg)->vbox), vbox, TRUE, TRUE, 0);
gtk_widget_show (vbox);
preview = gimp_drawable_preview_new (drawable, NULL);
gtk_box_pack_start (GTK_BOX (vbox), preview, TRUE, TRUE, 0);
gtk_widget_show (preview);
hbox = gtk_hbox_new (FALSE, 12);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
gtk_widget_show (hbox);
/* parameter settings */
frame = gimp_frame_new (_("Blur Radius"));
gtk_box_pack_start (GTK_BOX (hbox), frame, TRUE, TRUE, 0);
gtk_widget_show (frame);
/* Get the image resolution and unit */
gimp_image_get_resolution (image_ID, &xres, &yres);
unit = gimp_image_get_unit (image_ID);
size = gimp_coordinates_new (unit, "%a", TRUE, FALSE, -1,
GIMP_SIZE_ENTRY_UPDATE_SIZE,
(bvals.horizontal == bvals.vertical),
FALSE,
_("_Horizontal:"), bvals.horizontal, xres,
0, 8 * MAX (drawable->width, drawable->height),
0, 0,
_("_Vertical:"), bvals.vertical, yres,
0, 8 * MAX (drawable->width, drawable->height),
0, 0);
gtk_container_set_border_width (GTK_CONTAINER (size), 6);
gtk_container_add (GTK_CONTAINER (frame), size);
gtk_widget_show (size);
gimp_size_entry_set_pixel_digits (GIMP_SIZE_ENTRY (size), 1);
/* FIXME: Shouldn't need two signal connections here,
gimp_coordinates_new() seems to be severily broken. */
g_signal_connect_swapped (size, "value_changed",
G_CALLBACK (gimp_preview_invalidate),
preview);
g_signal_connect_swapped (size, "refval_changed",
G_CALLBACK (gimp_preview_invalidate),
preview);
g_signal_connect (preview, "invalidated",
G_CALLBACK (update_preview),
size);
frame = gimp_int_radio_group_new (TRUE, _("Blur Method"),
G_CALLBACK (gimp_radio_button_update),
&bvals.method, bvals.method,
_("_IIR"), BLUR_IIR, NULL,
_("_RLE"), BLUR_RLE, NULL,
NULL);
gtk_box_pack_start (GTK_BOX (hbox), frame, FALSE, FALSE, 0);
gtk_widget_show (frame);
gtk_widget_show (dlg);
run = (gimp_dialog_run (GIMP_DIALOG (dlg)) == GTK_RESPONSE_OK);
if (run)
{
bvals.horizontal = gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 0);
bvals.vertical = gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 1);
}
gtk_widget_destroy (dlg);
return run;
}
static void
update_preview (GtkWidget *preview,
GtkWidget *size)
{
gauss (GIMP_DRAWABLE_PREVIEW (preview)->drawable,
gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 0),
gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 1),
bvals.method,
preview);
}
/* Convert from separated to premultiplied alpha, on a single scan line. */
static void
multiply_alpha (guchar *buf,
gint width,
gint bytes)
{
gint i, j;
gdouble alpha;
for (i = 0; i < width * bytes; i += bytes)
{
alpha = buf[i + bytes - 1] * (1.0 / 255.0);
for (j = 0; j < bytes - 1; j++)
buf[i + j] *= alpha;
}
}
/* Convert from premultiplied to separated alpha, on a single scan
line. */
static void
separate_alpha (guchar *buf,
gint width,
gint bytes)
{
gint i, j;
guchar alpha;
gdouble recip_alpha;
gint new_val;
for (i = 0; i < width * bytes; i += bytes)
{
alpha = buf[i + bytes - 1];
if (alpha != 0 && alpha != 255)
{
recip_alpha = 255.0 / alpha;
for (j = 0; j < bytes - 1; j++)
{
new_val = buf[i + j] * recip_alpha;
buf[i + j] = MIN (255, new_val);
}
}
}
}
static void
gauss (GimpDrawable *drawable,
gdouble horz,
gdouble vert,
BlurMethod method,
GtkWidget *preview)
{
GimpPixelRgn src_rgn, dest_rgn;
gint width, height;
gint bytes;
gint has_alpha;
guchar *dest, *dp;
guchar *src, *sp, *sp_p, *sp_m;
gint *buf = NULL;
gint *bb;
gdouble n_p[5], n_m[5];
gdouble d_p[5], d_m[5];
gdouble bd_p[5], bd_m[5];
gdouble *val_p = NULL;
gdouble *val_m = NULL;
gdouble *vp, *vm;
gint x1, y1, x2, y2;
gint i, j;
gint row, col, b;
gint terms;
gdouble progress, max_progress;
gint initial_p[4];
gint initial_m[4];
gdouble std_dev;
gint pixels;
gint total = 1;
gint start, end;
gint *curve;
gint *sum = NULL;
gint val;
gint length;
gint initial_pp, initial_mm;
guchar *preview_buffer1 = NULL;
guchar *preview_buffer2 = NULL;
if (horz <= 0.0 && vert <= 0.0)
{
if (preview)
gimp_preview_draw (GIMP_PREVIEW (preview));
return;
}
if (preview)
{
gimp_preview_get_position (GIMP_PREVIEW (preview), &x1, &y1);
gimp_preview_get_size (GIMP_PREVIEW (preview), &width, &height);
}
else
{
gimp_drawable_mask_bounds (drawable->drawable_id, &x1, &y1, &x2, &y2);
width = (x2 - x1);
height = (y2 - y1);
}
if (width < 1 || height < 1)
return;
bytes = drawable->bpp;
has_alpha = gimp_drawable_has_alpha(drawable->drawable_id);
switch (method)
{
case BLUR_IIR:
val_p = g_new (gdouble, MAX (width, height) * bytes);
val_m = g_new (gdouble, MAX (width, height) * bytes);
break;
case BLUR_RLE:
buf = g_new (gint, MAX (width, height) * 2);
break;
}
src = g_new (guchar, MAX (width, height) * bytes);
dest = g_new (guchar, MAX (width, height) * bytes);
gimp_pixel_rgn_init (&src_rgn,
drawable, 0, 0, drawable->width, drawable->height,
FALSE, FALSE);
if (preview)
{
preview_buffer1 = g_new (guchar, width * height * bytes);
preview_buffer2 = g_new (guchar, width * height * bytes);
}
else
{
gimp_pixel_rgn_init (&dest_rgn,
drawable, 0, 0, drawable->width, drawable->height,
TRUE, TRUE);
}
progress = 0.0;
max_progress = (horz <= 0.0 ) ? 0 : width * height * horz;
max_progress += (vert <= 0.0 ) ? 0 : width * height * vert;
/* First the vertical pass */
if (vert > 0.0)
{
vert = fabs (vert) + 1.0;
std_dev = sqrt (-(vert * vert) / (2 * log (1.0 / 255.0)));
switch (method)
{
case BLUR_IIR:
/* derive the constants for calculating the gaussian
* from the std dev
*/
find_constants (n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
break;
case BLUR_RLE:
curve = make_curve (std_dev, &length);
sum = g_new (gint, 2 * length + 1);
sum[0] = 0;
for (i = 1; i <= length*2; i++)
sum[i] = curve[i-length-1] + sum[i-1];
sum += length;
total = sum[length] - sum[-length];
break;
}
for (col = 0; col < width; col++)
{
switch (method)
{
case BLUR_IIR:
memset (val_p, 0, height * bytes * sizeof (gdouble));
memset (val_m, 0, height * bytes * sizeof (gdouble));
break;
case BLUR_RLE:
break;
}
gimp_pixel_rgn_get_col (&src_rgn, src, col + x1, y1, height);
if (has_alpha)
multiply_alpha (src, height, bytes);
switch (method)
{
case BLUR_IIR:
sp_p = src;
sp_m = src + (height - 1) * bytes;
vp = val_p;
vm = val_m + (height - 1) * bytes;
/* Set up the first vals */
for (i = 0; i < bytes; i++)
{
initial_p[i] = sp_p[i];
initial_m[i] = sp_m[i];
}
for (row = 0; row < height; row++)
{
gdouble *vpptr, *vmptr;
terms = (row < 4) ? row : 4;
for (b = 0; b < bytes; b++)
{
vpptr = vp + b; vmptr = vm + b;
for (i = 0; i <= terms; i++)
{
*vpptr += n_p[i] * sp_p[(-i * bytes) + b] -
d_p[i] * vp[(-i * bytes) + b];
*vmptr += n_m[i] * sp_m[(i * bytes) + b] -
d_m[i] * vm[(i * bytes) + b];
}
for (j = i; j <= 4; j++)
{
*vpptr += (n_p[j] - bd_p[j]) * initial_p[b];
*vmptr += (n_m[j] - bd_m[j]) * initial_m[b];
}
}
sp_p += bytes;
sp_m -= bytes;
vp += bytes;
vm -= bytes;
}
transfer_pixels (val_p, val_m, dest, bytes, height);
break;
case BLUR_RLE:
sp = src;
dp = dest;
for (b = 0; b < bytes; b++)
{
initial_pp = sp[b];
initial_mm = sp[(height-1) * bytes + b];
/* Determine a run-length encoded version of the row */
run_length_encode (sp + b, buf, bytes, height);
for (row = 0; row < height; row++)
{
start = (row < length) ? -row : -length;
end = (height <= (row + length) ?
(height - row - 1) : length);
val = 0;
i = start;
bb = buf + (row + i) * 2;
if (start != -length)
val += initial_pp * (sum[start] - sum[-length]);
while (i < end)
{
pixels = bb[0];
i += pixels;
if (i > end)
i = end;
val += bb[1] * (sum[i] - sum[start]);
bb += (pixels * 2);
start = i;
}
if (end != length)
val += initial_mm * (sum[length] - sum[end]);
dp[row * bytes + b] = val / total;
}
}
break;
}
if (has_alpha)
separate_alpha (src, height, bytes);
if (preview)
{
for (row = 0 ; row < height ; row++)
memcpy (preview_buffer1 + (row * width + col) * bytes,
dest + row * bytes,
bytes);
}
else
{
gimp_pixel_rgn_set_col (&dest_rgn, dest, col + x1, y1, height);
progress += height * vert;
if ((col % 5) == 0)
gimp_progress_update (progress / max_progress);
}
}
/* prepare for the horizontal pass */
gimp_pixel_rgn_init (&src_rgn,
drawable, 0, 0, drawable->width, drawable->height,
FALSE, TRUE);
}
/* Now the horizontal pass */
if (horz > 0.0)
{
horz = fabs (horz) + 1.0;
if (horz != vert)
{
std_dev = sqrt (-(horz * horz) / (2 * log (1.0 / 255.0)));
switch (method)
{
case BLUR_IIR:
/* derive the constants for calculating the gaussian
* from the std dev
*/
find_constants (n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
break;
case BLUR_RLE:
curve = make_curve (std_dev, &length);
sum = g_new (gint, 2 * length + 1);
sum[0] = 0;
for (i = 1; i <= length*2; i++)
sum[i] = curve[i-length-1] + sum[i-1];
sum += length;
total = sum[length] - sum[-length];
break;
}
}
for (row = 0; row < height; row++)
{
switch (method)
{
case BLUR_IIR:
memset (val_p, 0, width * bytes * sizeof (gdouble));
memset (val_m, 0, width * bytes * sizeof (gdouble));
break;
case BLUR_RLE:
break;
}
if (preview)
{
memcpy (src,
preview_buffer1 + row * width * bytes,
width * bytes);
}
else
{
gimp_pixel_rgn_get_row (&src_rgn, src, x1, row + y1, width);
}
if (has_alpha)
multiply_alpha (dest, width, bytes);
switch (method)
{
case BLUR_IIR:
sp_p = src;
sp_m = src + (width - 1) * bytes;
vp = val_p;
vm = val_m + (width - 1) * bytes;
/* Set up the first vals */
for (i = 0; i < bytes; i++)
{
initial_p[i] = sp_p[i];
initial_m[i] = sp_m[i];
}
for (col = 0; col < width; col++)
{
gdouble *vpptr, *vmptr;
terms = (col < 4) ? col : 4;
for (b = 0; b < bytes; b++)
{
vpptr = vp + b; vmptr = vm + b;
for (i = 0; i <= terms; i++)
{
*vpptr += n_p[i] * sp_p[(-i * bytes) + b] -
d_p[i] * vp[(-i * bytes) + b];
*vmptr += n_m[i] * sp_m[(i * bytes) + b] -
d_m[i] * vm[(i * bytes) + b];
}
for (j = i; j <= 4; j++)
{
*vpptr += (n_p[j] - bd_p[j]) * initial_p[b];
*vmptr += (n_m[j] - bd_m[j]) * initial_m[b];
}
}
sp_p += bytes;
sp_m -= bytes;
vp += bytes;
vm -= bytes;
}
transfer_pixels (val_p, val_m, dest, bytes, width);
break;
case BLUR_RLE:
sp = src;
dp = dest;
for (b = 0; b < bytes; b++)
{
initial_pp = sp[b];
initial_mm = sp[(width-1) * bytes + b];
/* Determine a run-length encoded version of the row */
run_length_encode (sp + b, buf, bytes, width);
for (col = 0; col < width; col++)
{
start = (col < length) ? -col : -length;
end = (width <= (col + length)) ? (width - col - 1) : length;
val = 0;
i = start;
bb = buf + (col + i) * 2;
if (start != -length)
val += initial_pp * (sum[start] - sum[-length]);
while (i < end)
{
pixels = bb[0];
i += pixels;
if (i > end)
i = end;
val += bb[1] * (sum[i] - sum[start]);
bb += (pixels * 2);
start = i;
}
if (end != length)
val += initial_mm * (sum[length] - sum[end]);
dp[col * bytes + b] = val / total;
}
}
break;
}
if (has_alpha)
separate_alpha (dest, width, bytes);
if (preview)
{
memcpy (preview_buffer2 + row * width * bytes,
dest,
width * bytes);
}
else
{
gimp_pixel_rgn_set_row (&dest_rgn, dest, x1, row + y1, width);
progress += width * horz;
if ((row % 5) == 0)
gimp_progress_update (progress / max_progress);
}
}
}
if (preview)
{
gimp_drawable_preview_draw (GIMP_DRAWABLE_PREVIEW (preview),
preview_buffer2);
g_free (preview_buffer1);
g_free (preview_buffer2);
}
else
{
/* merge the shadow, update the drawable */
gimp_drawable_flush (drawable);
gimp_drawable_merge_shadow (drawable->drawable_id, TRUE);
gimp_drawable_update (drawable->drawable_id, x1, y1, width, height);
}
/* free up buffers */
switch (method)
{
case BLUR_IIR:
g_free (val_p);
g_free (val_m);
break;
case BLUR_RLE:
g_free (buf);
break;
}
g_free (src);
g_free (dest);
}
static void
transfer_pixels (gdouble *src1,
gdouble *src2,
guchar *dest,
gint bytes,
gint width)
{
gint b;
gint bend = bytes * width;
gdouble sum;
for(b = 0; b < bend; b++)
{
sum = *src1++ + *src2++;
if (sum > 255) sum = 255;
else if(sum < 0) sum = 0;
*dest++ = (guchar) sum;
}
}
static void
find_constants (gdouble n_p[],
gdouble n_m[],
gdouble d_p[],
gdouble d_m[],
gdouble bd_p[],
gdouble bd_m[],
gdouble std_dev)
{
gint i;
gdouble constants [8];
gdouble div;
/* The constants used in the implemenation of a casual sequence
* using a 4th order approximation of the gaussian operator
*/
div = sqrt(2 * G_PI) * std_dev;
constants [0] = -1.783 / std_dev;
constants [1] = -1.723 / std_dev;
constants [2] = 0.6318 / std_dev;
constants [3] = 1.997 / std_dev;
constants [4] = 1.6803 / div;
constants [5] = 3.735 / div;
constants [6] = -0.6803 / div;
constants [7] = -0.2598 / div;
n_p [0] = constants[4] + constants[6];
n_p [1] = exp (constants[1]) *
(constants[7] * sin (constants[3]) -
(constants[6] + 2 * constants[4]) * cos (constants[3])) +
exp (constants[0]) *
(constants[5] * sin (constants[2]) -
(2 * constants[6] + constants[4]) * cos (constants[2]));
n_p [2] = 2 * exp (constants[0] + constants[1]) *
((constants[4] + constants[6]) * cos (constants[3]) * cos (constants[2]) -
constants[5] * cos (constants[3]) * sin (constants[2]) -
constants[7] * cos (constants[2]) * sin (constants[3])) +
constants[6] * exp (2 * constants[0]) +
constants[4] * exp (2 * constants[1]);
n_p [3] = exp (constants[1] + 2 * constants[0]) *
(constants[7] * sin (constants[3]) - constants[6] * cos (constants[3])) +
exp (constants[0] + 2 * constants[1]) *
(constants[5] * sin (constants[2]) - constants[4] * cos (constants[2]));
n_p [4] = 0.0;
d_p [0] = 0.0;
d_p [1] = -2 * exp (constants[1]) * cos (constants[3]) -
2 * exp (constants[0]) * cos (constants[2]);
d_p [2] = 4 * cos (constants[3]) * cos (constants[2]) * exp (constants[0] + constants[1]) +
exp (2 * constants[1]) + exp (2 * constants[0]);
d_p [3] = -2 * cos (constants[2]) * exp (constants[0] + 2 * constants[1]) -
2 * cos (constants[3]) * exp (constants[1] + 2 * constants[0]);
d_p [4] = exp (2 * constants[0] + 2 * constants[1]);
for (i = 0; i <= 4; i++)
d_m [i] = d_p [i];
n_m[0] = 0.0;
for (i = 1; i <= 4; i++)
n_m [i] = n_p[i] - d_p[i] * n_p[0];
{
gdouble sum_n_p, sum_n_m, sum_d;
gdouble a, b;
sum_n_p = 0.0;
sum_n_m = 0.0;
sum_d = 0.0;
for (i = 0; i <= 4; i++)
{
sum_n_p += n_p[i];
sum_n_m += n_m[i];
sum_d += d_p[i];
}
a = sum_n_p / (1.0 + sum_d);
b = sum_n_m / (1.0 + sum_d);
for (i = 0; i <= 4; i++)
{
bd_p[i] = d_p[i] * a;
bd_m[i] = d_m[i] * b;
}
}
}
/*
* The equations: g(r) = exp (- r^2 / (2 * sigma^2))
* r = sqrt (x^2 + y ^2)
*/
static gint *
make_curve (gdouble sigma,
gint *length)
{
gint *curve;
gdouble sigma2;
gdouble l;
gint temp;
gint i, n;
sigma2 = 2 * sigma * sigma;
l = sqrt (-sigma2 * log (1.0 / 255.0));
n = ceil (l) * 2;
if ((n % 2) == 0)
n += 1;
curve = g_new (gint, n);
*length = n / 2;
curve += *length;
curve[0] = 255;
for (i = 1; i <= *length; i++)
{
temp = (gint) (exp (- (i * i) / sigma2) * 255);
curve[-i] = temp;
curve[i] = temp;
}
return curve;
}
static void
run_length_encode (guchar *src,
gint *dest,
gint bytes,
gint width)
{
gint start;
gint i;
gint j;
guchar last;
last = *src;
src += bytes;
start = 0;
for (i = 1; i < width; i++)
{
if (*src != last)
{
for (j = start; j < i; j++)
{
*dest++ = (i - j);
*dest++ = last;
}
start = i;
last = *src;
}
src += bytes;
}
for (j = start; j < i; j++)
{
*dest++ = (i - j);
*dest++ = last;
}
}