cutlass/test/unit/transform/threadblock/predicated_tile_iterator.cu

799 lines
25 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests cutlass::transform::threadblock::PredicatedTileIterator
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/cutlass.h"
#include "cutlass/transform/pitch_linear_thread_map.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/tensor_fill.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace transform {
namespace threadblock {
namespace kernel {
/// Copy with an iterator
template <typename Iterator>
__global__ void copy(
typename Iterator::Params dst_params,
typename Iterator::Element *dst_pointer,
typename Iterator::Params src_params,
typename Iterator::Element *src_pointer,
cutlass::Coord<2> extent) {
Iterator dst_iterator(dst_params, dst_pointer, extent, threadIdx.x);
Iterator src_iterator(src_params, src_pointer, extent, threadIdx.x);
int iterations = (extent[1] + Iterator::Shape::kStrided - 1) / Iterator::Shape::kStrided;
typename Iterator::Fragment frag;
for(size_t i = 0; i < frag.size(); i++)
frag[i] = 0;
src_iterator.load(frag);
dst_iterator.store(frag);
++dst_iterator;
++src_iterator;
for (; iterations > 1; --iterations) {
src_iterator.load(frag);
dst_iterator.store(frag);
++dst_iterator;
++src_iterator;
}
}
} // namespace kernel
} // namespace threadblock
} // namespace transform
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined) {
using Shape = cutlass::layout::PitchLinearShape<64, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinearStripminedThreadMap<Shape, kThreads>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator<
Shape, Element, Layout, 1, ThreadMap
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(57, 35);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(64, 35);
cutlass::HostTensor<int, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::BlockFillSequential(src_tensor.host_data(), src_tensor.capacity());
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]; ++s) {
for (int c = 0; c < alloc_extent[0]; ++c) {
Element expected = Element(0);
if (c < copy_extent[0] && s < copy_extent[1]) {
expected = src_tensor.at({c, s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({c, s});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_128x4) {
using Shape = cutlass::layout::PitchLinearShape<128, 4>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap, false
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(128, 4);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(128, 4);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::BlockFillSequential(src_tensor.host_data(), src_tensor.capacity());
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]; ++s) {
for (int c = 0; c < alloc_extent[0]; ++c) {
Element expected = Element(0);
if (c < copy_extent[0] && s < copy_extent[1]) {
expected = src_tensor.at({c, s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({c, s});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_128x64) {
using Shape = cutlass::layout::PitchLinearShape<128, 64>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(128, 64);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(128, 64);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::BlockFillSequential(src_tensor.host_data(), src_tensor.capacity());
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]; ++s) {
for (int c = 0; c < alloc_extent[0]; ++c) {
Element expected = Element(0);
if (c < copy_extent[0] && s < copy_extent[1]) {
expected = src_tensor.at({c, s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({c, s});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_64x64) {
using Shape = cutlass::layout::PitchLinearShape<64, 64>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(64, 64);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(64, 64);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::BlockFillSequential(src_tensor.host_data(), src_tensor.capacity());
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]; ++s) {
for (int c = 0; c < alloc_extent[0]; ++c) {
Element expected = Element(0);
if (c < copy_extent[0] && s < copy_extent[1]) {
expected = src_tensor.at({c, s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({c, s});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_64x8) {
using Shape = cutlass::layout::PitchLinearShape<64, 8>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(32, 8);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(64, 8);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::BlockFillSequential(src_tensor.host_data(), src_tensor.capacity());
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]; ++s) {
for (int c = 0; c < alloc_extent[0]; ++c) {
Element expected = Element(0);
if (c < copy_extent[0] && s < copy_extent[1]) {
expected = src_tensor.at({c, s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({c, s});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_64x32_transpose4x4) {
using Shape = cutlass::layout::PitchLinearShape<64, 8>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap, true
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(64, 32);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(64, 32);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
uint64_t seed = 7;
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::TensorFillRandomUniform(src_tensor.host_view(), seed, 8, -8, 0);
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]/4; ++s) {
for (int c = 0; c < alloc_extent[0]/4; ++c) {
for (int s1 = 0; s1 < 4; s1++){
for(int c1 = 0; c1 < 4; c1++){
Element expected = Element(0);
int l_c = c * 4 + c1;
int l_s = s * 4 + s1;
int l_tc = c * 4 + s1;
int l_ts = s * 4 + c1;
if (l_c < copy_extent[0] && l_s < copy_extent[1]) {
expected = src_tensor.at({l_c, l_s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({l_tc, l_ts});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_64x29_transpose4x4) {
using Shape = cutlass::layout::PitchLinearShape<64, 8>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap, true
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(64, 29);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(64, 29);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
uint64_t seed = 7;
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::TensorFillRandomUniform(src_tensor.host_view(), seed, 8, -8, 0);
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]/4; ++s) {
for (int c = 0; c < alloc_extent[0]/4; ++c) {
for (int s1 = 0; s1 < 4; s1++){
for(int c1 = 0; c1 < 4; c1++){
Element expected = Element(0);
int l_c = c * 4 + c1;
int l_s = s * 4 + s1;
int l_tc = c * 4 + s1;
int l_ts = s * 4 + c1;
if (l_c < copy_extent[0] && l_s < copy_extent[1]) {
expected = src_tensor.at({l_c, l_s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({l_tc, l_ts});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_120x4_transpose4x4) {
using Shape = cutlass::layout::PitchLinearShape<128, 4>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap, true
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(120, 4);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(120, 4);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
uint64_t seed = 7;
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::TensorFillRandomUniform(src_tensor.host_view(), seed, 8, -8, 0);
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]/4; ++s) {
for (int c = 0; c < alloc_extent[0]/4; ++c) {
for (int s1 = 0; s1 < 4; s1++){
for(int c1 = 0; c1 < 4; c1++){
Element expected = Element(0);
int l_c = c * 4 + c1;
int l_s = s * 4 + s1;
int l_tc = c * 4 + s1;
int l_ts = s * 4 + c1;
if (l_c < copy_extent[0] && l_s < copy_extent[1]) {
expected = src_tensor.at({l_c, l_s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({l_tc, l_ts});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Transform_threadblock_PredicatedTileIterator, PitchLinear_Stripmined_2dtile_48x29_transpose4x4) {
using Shape = cutlass::layout::PitchLinearShape<64, 8>;
using ThreadTileShape = cutlass::layout::PitchLinearShape<4, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int8_t;
static int const kThreads = 32;
using ThreadMap = cutlass::transform::PitchLinear2DThreadTileStripminedThreadMap<Shape, kThreads, ThreadTileShape>;
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile<
Shape, Element, Layout, 1, ThreadMap, true
>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(48, 29);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(48, 29);
cutlass::HostTensor<int8_t, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<int8_t, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
uint64_t seed = 7;
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
cutlass::reference::host::TensorFillRandomUniform(src_tensor.host_view(), seed, 8, -8, 0);
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
test::transform::threadblock::kernel::copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
EXPECT_EQ(result, cudaSuccess) << " - CUDA error: " << cudaGetErrorString(result);
dst_tensor.sync_host();
for (int s = 0; s < alloc_extent[1]/4; ++s) {
for (int c = 0; c < alloc_extent[0]/4; ++c) {
for (int s1 = 0; s1 < 4; s1++){
for(int c1 = 0; c1 < 4; c1++){
Element expected = Element(0);
int l_c = c * 4 + c1;
int l_s = s * 4 + s1;
int l_tc = c * 4 + s1;
int l_ts = s * 4 + c1;
if (l_c < copy_extent[0] && l_s < copy_extent[1]) {
expected = src_tensor.at({l_c, l_s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({l_tc, l_ts});
bool equal = (expected == got);
EXPECT_EQ(expected, got)
<< "Source:\n" << src_tensor.host_view() << "\n\n"
<< "Destination:\n" << dst_tensor.host_view() << "\n";
if (!equal) {
return;
}
}
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////