243 lines
6.5 KiB
C++
243 lines
6.5 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Unit tests for thread-level Reduction
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/reduction/thread/reduce.h"
|
|
|
|
#include "cutlass/layout/vector.h"
|
|
#include "cutlass/util/host_tensor.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
|
|
#include "cutlass/util/reference/host/tensor_copy.h"
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
|
|
namespace test {
|
|
namespace reduction {
|
|
namespace thread {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Structure to compute the reduction
|
|
template <
|
|
/// Data type of elements
|
|
typename Element,
|
|
/// Number of elements
|
|
int N
|
|
>
|
|
struct Testbed_reduce_host {
|
|
|
|
/// Thread-level reduction operator
|
|
using Reduce = cutlass::reduction::thread::Reduce<
|
|
cutlass::plus<Element>,
|
|
cutlass::Array<Element, N>
|
|
>;
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
cutlass::Array<Element, N> tensor_in;
|
|
cutlass::Array<Element, 1> reduced_tensor_computed;
|
|
cutlass::Array<Element, 1> reduced_tensor_reference;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Allocates workspace in device memory
|
|
Testbed_reduce_host() {
|
|
tensor_in.clear();
|
|
reduced_tensor_computed.clear();
|
|
reduced_tensor_reference.clear();
|
|
}
|
|
|
|
/// Runs the test
|
|
bool run() {
|
|
|
|
//
|
|
// initialize memory
|
|
//
|
|
|
|
for(int i = 0; i < N; i++)
|
|
tensor_in.at(i) = Element(i);
|
|
|
|
|
|
Reduce reduce;
|
|
|
|
cutlass::Array<Element, 1> *out_ptr = &reduced_tensor_computed;
|
|
out_ptr[0] = reduce(tensor_in);
|
|
|
|
//
|
|
// Reference implementation
|
|
//
|
|
Element e(0);
|
|
for (int i = 0; i < N; i++)
|
|
e = e + Element(i);
|
|
|
|
reduced_tensor_reference.at(0) = e;
|
|
|
|
//
|
|
// Verify equivalence
|
|
//
|
|
|
|
// compare
|
|
bool passed = reduced_tensor_reference[0] == reduced_tensor_computed[0];
|
|
|
|
EXPECT_TRUE(passed)
|
|
<< "Expected = " << float(reduced_tensor_reference.at(0)) << "\n\n"
|
|
<< "Actual = " << float(reduced_tensor_computed.at(0)) << "\n\n"
|
|
<< std::endl;
|
|
|
|
return passed;
|
|
}
|
|
};
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Thread-level reduction kernel
|
|
template <typename Element, int N>
|
|
__global__ void kernel_reduce(Element const *array_in, Element *result) {
|
|
|
|
/// Thread-level reduction operator
|
|
using Reduce = cutlass::reduction::thread::Reduce<
|
|
cutlass::plus<Element>,
|
|
cutlass::Array<Element, N>
|
|
>;
|
|
|
|
Reduce reduce;
|
|
|
|
auto ptr_in = reinterpret_cast<cutlass::Array<Element , N> const *>(array_in);
|
|
auto result_ptr = reinterpret_cast<cutlass::Array<Element , 1> *>(result);
|
|
auto in = *ptr_in;
|
|
result_ptr[0] = reduce(in);
|
|
}
|
|
|
|
|
|
/// Structure to compute the reduction
|
|
template <
|
|
/// Data type of elements
|
|
typename Element,
|
|
/// Number of elements
|
|
int N
|
|
>
|
|
struct Testbed_reduce_device {
|
|
|
|
using Layout = cutlass::layout::PackedVectorLayout;
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
cutlass::HostTensor<Element, Layout> tensor_in;
|
|
cutlass::HostTensor<Element, Layout> reduced_tensor_computed;
|
|
cutlass::HostTensor<Element, Layout> reduced_tensor_reference;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Allocates workspace in device memory
|
|
Testbed_reduce_device() {
|
|
|
|
tensor_in.reset(cutlass::make_Coord(N), true);
|
|
reduced_tensor_computed.reset(cutlass::make_Coord(1), true);
|
|
reduced_tensor_reference.reset(cutlass::make_Coord(1), true);
|
|
}
|
|
|
|
|
|
/// Runs the test
|
|
bool run() {
|
|
|
|
//
|
|
// initialize memory
|
|
//
|
|
|
|
cutlass::reference::host::TensorFill(
|
|
tensor_in.host_view(),
|
|
Element(1)
|
|
);
|
|
|
|
cutlass::reference::host::TensorFill(
|
|
reduced_tensor_computed.host_view(),
|
|
Element(0)
|
|
);
|
|
|
|
cutlass::reference::host::TensorFill(
|
|
reduced_tensor_reference.host_view(),
|
|
Element(N)
|
|
);
|
|
|
|
tensor_in.sync_device();
|
|
reduced_tensor_computed.sync_device();
|
|
reduced_tensor_reference.sync_device();
|
|
|
|
/// call the kernel
|
|
kernel_reduce<Element, N><<< dim3(1, 1), dim3(1, 1, 1) >>> (
|
|
tensor_in.device_data(),
|
|
reduced_tensor_computed.device_data()
|
|
);
|
|
|
|
// verify no errors
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
|
|
EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result);
|
|
if (result != cudaSuccess) {
|
|
return false;
|
|
}
|
|
|
|
// Copy back results
|
|
reduced_tensor_computed.sync_host();
|
|
|
|
// Verify equivalence
|
|
bool passed = cutlass::reference::host::TensorEquals(
|
|
reduced_tensor_computed.host_view(),
|
|
reduced_tensor_reference.host_view()
|
|
);
|
|
|
|
EXPECT_TRUE(passed)
|
|
<< "Expected = " << reduced_tensor_reference.host_view() << "\n\n"
|
|
<< "Actual = " << reduced_tensor_computed.host_view() << "\n\n"
|
|
<< std::endl;
|
|
|
|
return passed;
|
|
}
|
|
};
|
|
|
|
} // namespace thread
|
|
} // namespace reduction
|
|
} // namespace test
|