cutlass/test/unit/pipeline/pipeline_tma_async_warp_spe...

579 lines
19 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit test for the PipelineTmaAsync class used in a WarpSpecialized Persistent loop
*/
#define KERNEL_DBG_TRACE false
#include "../common/cutlass_unit_test.h"
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
#include <cute/arch/cluster_sm90.hpp>
#include <cutlass/util/reference/host/gemm.h>
#include <cutlass/cluster_launch.hpp>
#include "cutlass/core_io.h"
#include "cutlass/util/print_error.hpp"
#include "cutlass/util/GPU_Clock.hpp"
#include "testbed.h"
#include "cutlass/pipeline/pipeline.hpp"
#include "cutlass/arch/barrier.h"
#include "cute/arch/cluster_sm90.hpp"
#include "cutlass/arch/barrier.h"
#include "cutlass/arch/reg_reconfig.h"
using namespace cute;
using namespace cutlass;
//////////////////// KERNEL /////////////////////////
template <uint32_t Stages, typename PingPongBarrier>
struct SharedStorage
{
typename cutlass::PipelineTmaAsync<Stages>::SharedStorage pipeline_storage;
typename PingPongBarrier::SharedStorage pingpong_storage;
};
template <typename ClusterShape, uint32_t Stages>
struct CollectiveSimulation {
using MainloopPipeline = typename cutlass::PipelineTmaAsync<Stages>;
using PipelineState = typename cutlass::PipelineState<Stages>;
CUTLASS_DEVICE
static void
dma_wg_simulation(MainloopPipeline pipeline, PipelineState tile_start_state_pipe,
uint32_t const num_iterations) {
uint32_t const per_cta_bytes = sizeof(uint32_t);
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
int lane_predicate = cute::elect_one_sync();
if (warp_idx_in_warpgroup==0 && lane_predicate) {
int tma_k_prologue = min(Stages, num_iterations);
// Simulating Prologue TMA Loads
CUTLASS_PRAGMA_UNROLL
for(int i = 0; i < tma_k_prologue; ++i) {
pipeline.producer_acquire(tile_start_state_pipe);
// Simulating cp.async.bulk.tensor behavior
pipeline.producer_commit(tile_start_state_pipe, per_cta_bytes);
++tile_start_state_pipe;
}
int tma_k_iter = num_iterations - tma_k_prologue;
PipelineState wr_pipe = tile_start_state_pipe;
// Simulating Mainloop TMA Loads
CUTE_NO_UNROLL
for ( ; tma_k_iter > 0; --tma_k_iter){
pipeline.producer_acquire(wr_pipe);
// Simulating cp.async.bulk.tensor behavior
pipeline.producer_commit(wr_pipe, per_cta_bytes);
// Advance write stage
++wr_pipe;
}
}
}
CUTLASS_DEVICE
static void
math_wg_simulation(MainloopPipeline pipeline, PipelineState tile_start_state_pipe,
uint32_t const num_iterations, int* data_ptr) {
PipelineState rd_pipe = tile_start_state_pipe;
PipelineState release_pipe = rd_pipe;
// simulates accumulators + extra reg. pressure
int arr[168];
// Init Shared Memory read stages & PhaseBit
static constexpr uint32_t K_PIPE_MMAS = 1;
static_assert( K_PIPE_MMAS < Stages, "ERROR : Too many MMAs in flight");
// Total number of gemm iterations
auto gemm_k_iterations = num_iterations;
// Simulating Prologue MMAs
int mma_k_prologue = min(K_PIPE_MMAS, gemm_k_iterations);
CUTLASS_PRAGMA_UNROLL
for (int iter = 0; iter < mma_k_prologue; ++iter) {
pipeline.consumer_wait(rd_pipe);
warpgroup_arrive();
// GMMA would typically happen here
++rd_pipe;
}
gemm_k_iterations -= mma_k_prologue;
// Simulating Mainloop MMAs
CUTLASS_PRAGMA_NO_UNROLL
for ( ; gemm_k_iterations > 0; --gemm_k_iterations) {
/// Wait on the rd_pipe stage / phase
pipeline.consumer_wait(rd_pipe);
warpgroup_arrive();
// GMMA would typically happen here
// Dummy op - which will never happen
// But simulates high register usage.
CUTE_UNROLL
for(int i = 0; i < 168; ++i){
if (threadIdx.x > 384){
arr[i] += data_ptr[i];
}
}
pipeline.consumer_release(release_pipe);
// Advance stages
++rd_pipe;
++release_pipe;
}
// Dummy op - which will never happen
CUTE_UNROLL
for(int i = 0; i < 168; ++i){
if (threadIdx.x > 384){
data_ptr[i] = arr[i];
}
}
// Tail Loop
for (int i = 0; i < K_PIPE_MMAS; ++i){
pipeline.consumer_release(release_pipe);
++release_pipe;
}
}
};
struct KernelParams
{
uint32_t num_iterations;
int tiles_per_cluster;
int* data_ptr;
};
// Goal of this kernel is to complete deadlock-free
template <typename ClusterShape, uint32_t Stages>
__launch_bounds__(384, 1)
__global__ static
void pipeline_device(KernelParams params)
{
extern __shared__ char shared_memory[];
using MainloopPipeline = typename cutlass::PipelineTmaAsync<Stages>;
using PipelineState = typename cutlass::PipelineState<Stages>;
/* One for Mainloop and one for Epilogue */
constexpr int StagesPerMathWarpGroup = 2;
constexpr int MathWarpGroupCountPersistent = 2;
using PingPongBarrier = typename cutlass::OrderedSequenceBarrier<StagesPerMathWarpGroup, MathWarpGroupCountPersistent>;
using SharedStorage = SharedStorage<Stages, PingPongBarrier>;
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(shared_memory);
[[maybe_unused]] auto cta_layout = Layout<ClusterShape>{}; // (m,n) -> cta_id
int warp_group_idx = __shfl_sync(0xffffffff, threadIdx.x / NumThreadsPerWarpGroup, 0);
int warp_group_thread_idx = threadIdx.x % NumThreadsPerWarpGroup;
dim3 block_id_in_cluster = cute::block_id_in_cluster();
auto cluster_shape = ClusterShape{};
// #Producers = #RowsInCluster + #ColsInCluster - 1
uint32_t const NumProducers = cute::size<0>(cluster_shape) + cute::size<1>(cluster_shape) - 1;
uint32_t const TmaTransactionBytes = static_cast<uint32_t>(sizeof(uint32_t) * NumProducers);
// mbarrier.init
typename MainloopPipeline::Params pipeline_params;
pipeline_params.transaction_bytes = TmaTransactionBytes;
if (warp_group_idx == 0) {
pipeline_params.role = MainloopPipeline::ThreadCategory::Producer;
}
else {
pipeline_params.role = MainloopPipeline::ThreadCategory::Consumer;
}
pipeline_params.is_leader = warp_group_thread_idx == 0;
pipeline_params.num_consumers = NumThreadsPerWarpGroup;
MainloopPipeline pipeline(shared_storage.pipeline_storage, pipeline_params, cluster_shape);
PipelineState tile_start_state_pipe;
int tiles_per_cluster = params.tiles_per_cluster;
/* Offset pipeline start state for Math WG 2 */
if (warp_group_idx == 2) {
// Update pipeline state for next persistent tile
tile_start_state_pipe.advance(params.num_iterations);
tiles_per_cluster--;
}
typename PingPongBarrier::Params pingpong_params;
pingpong_params.group_id = warp_group_idx - 1; // Since DMA Warp Group Idx 0 will not participate
pingpong_params.group_size = NumThreadsPerWarpGroup; // Number of threads / participants in a group
PingPongBarrier math_wg_barrier(shared_storage.pingpong_storage, pingpong_params);
__syncthreads();
// Ensure All CTAs in Cluster have completed init before issuing commits
cute::cluster_arrive_relaxed();
cute::cluster_wait();
// Producer/DMA WarpGroup
if (warp_group_idx == 0) {
cutlass::arch::warpgroup_reg_dealloc<40>();
// For the DMA (prologue) - we start with an opposite phase - since we skip all waits
// i.e., we know that the buffer is indeed empty
PipelineState tile_prologue_state_pipe = make_producer_start_state<MainloopPipeline>();
while (tiles_per_cluster > 0) {
CollectiveSimulation<ClusterShape,Stages>::dma_wg_simulation(pipeline, tile_prologue_state_pipe, params.num_iterations);
// Update pipeline state for next persistent tile
tile_prologue_state_pipe.advance(params.num_iterations);
tiles_per_cluster--;
}
}
// Math WarpGropups
if(warp_group_idx == 1 || warp_group_idx == 2) {
cutlass::arch::warpgroup_reg_alloc<232>();
while (tiles_per_cluster > 0) {
// MMA
math_wg_barrier.wait();
CollectiveSimulation<ClusterShape,Stages>::math_wg_simulation(pipeline, tile_start_state_pipe, params.num_iterations, params.data_ptr);
math_wg_barrier.arrive();
// Epilogue
math_wg_barrier.wait();
// Simulates long running stage
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 700)
__nanosleep(100000);
#endif
math_wg_barrier.arrive();
// Update pipeline state for next persistent tile
tile_start_state_pipe.advance(params.num_iterations * 2);
tiles_per_cluster -= 2;
}
}
// Makes sure remote SMEM doesn't get destroyed
cute::cluster_arrive_relaxed();
cute::cluster_wait();
}
/////////////////////////////////////////////////////
/// Device NT GMMA + TMA specialized
template<uint32_t Stages_, typename ClusterShape_>
struct PipelineTest {
//
// Data members
//
static constexpr uint32_t Stages = Stages_;
static constexpr uint32_t kBlockSize = 128 * 3;
using ClusterShape = ClusterShape_;
//
// Methods
//
// Run CuTe GEMM kernel
cudaError_t run(uint32_t const kNumIters,
cudaStream_t stream = 0) {
float elapsed_ms = 0.0f;
// Pipeline (multistage pipeline)
auto cluster_shape = Shape<Int<ClusterShape::kM>, Int<ClusterShape::kN>, _1>{};
//
// Configure and launch
//
int iterations = 1;
cudaEvent_t events[2];
cudaError_t result;
for (cudaEvent_t & event : events) {
result = cudaEventCreate(&event);
if (result != cudaSuccess) {
std::cerr << "Error: Failed to create event.";
return result;
}
}
result = cudaEventRecord(events[0]);
if (result != cudaSuccess) {
std::cerr << "Error: Failed to record start event.";
return result;
}
for (int iter = 0; iter < iterations; ++iter) {
constexpr int StagesPerMathWarpGroup = 2;
constexpr int MathWarpGroupCountPersistent = 2;
int smem_size = int(sizeof(SharedStorage<Stages,
typename cutlass::OrderedSequenceBarrier<StagesPerMathWarpGroup, MathWarpGroupCountPersistent>>));
result = cudaFuncSetAttribute(
pipeline_device<decltype(cluster_shape), Stages>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
// Launch a single Cluster, with kBlockSize threads per CTA
dim3 dimCluster(size<0>(cluster_shape), size<1>(cluster_shape), 1);
dim3 dimGrid(size<0>(cluster_shape), size<1>(cluster_shape), 1);
dim3 dimBlock(kBlockSize,1,1);
int tiles_per_cluster = (kNumIters % 10) + 1;
printf("Persistent version: Tiles per Cluster = %d\n", tiles_per_cluster);
const void* kernel = (const void*)pipeline_device<decltype(cluster_shape), Stages>;
KernelParams params{kNumIters, tiles_per_cluster, nullptr};
void *kernel_params[] = {&params};
cutlass::ClusterLauncher::launch(dimGrid, dimCluster, dimBlock, smem_size, stream, kernel, kernel_params);
}
result = cudaEventRecord(events[1]);
if (result != cudaSuccess) {
std::cerr << "Error: Failed to record stop event.";
return result;
}
result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cerr << "Error: cudaDeviceSynchronize() failed" << std::endl;
return result;
}
result = cudaEventElapsedTime(&elapsed_ms, events[0], events[1]);
if (result != cudaSuccess) {
std::cerr << "Failed to create event.";
return result;
}
for (cudaEvent_t & event : events) {
(void)cudaEventDestroy(event);
}
return cudaSuccess;
}
};
#if CUDA_12_0_SM90_FEATURES_SUPPORTED
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x1_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 1, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x1_Stage5) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 1, 1>;
static constexpr uint32_t Stages = 5;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x1_Stage10) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 1, 1>;
static constexpr uint32_t Stages = 10;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x2_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 2, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x2_Stage5) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 2, 1>;
static constexpr uint32_t Stages = 5;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x2_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 2, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x4_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 4, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x4_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 4, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x1_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 1, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x1_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 1, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x2_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 2, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x2_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 2, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x1_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 1, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x1_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 1, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x4_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 4, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x4_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 4, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x4_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 4, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x4_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 4, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x2_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 2, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x2_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 2, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
#endif