399 lines
12 KiB
C++
399 lines
12 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Unit tests for thread-level GEMM
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <cstdio>
|
|
#include <vector>
|
|
|
|
#include "cutlass/gemm/thread/mma.h"
|
|
#include "../kernel/thread/testbed_kernel.h"
|
|
|
|
#include "cutlass/util/host_tensor.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
#include "cutlass/trace.h"
|
|
|
|
#include "cutlass/util/reference/host/tensor_copy.h"
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
#include "cutlass/util/reference/host/gemm.h"
|
|
|
|
#include <cuda.h>
|
|
#include <nvrtc.h>
|
|
#include "../cutlass/nvrtc/environment.h"
|
|
#include <assert.h>
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace test {
|
|
namespace nvrtc {
|
|
namespace thread {
|
|
|
|
#define NVRTC_RETURN_IF_ERROR(api) \
|
|
do { \
|
|
nvrtcResult _result = api; \
|
|
if (_result != NVRTC_SUCCESS) { \
|
|
CUTLASS_TRACE_HOST("Nvrtc error: " << _result); \
|
|
return false; \
|
|
} \
|
|
} while(0)
|
|
|
|
inline const char * cuda_source_fmt = R"""(
|
|
|
|
#include "kernel/thread/contraction.hpp"
|
|
|
|
using Operator = %s;
|
|
|
|
extern "C" __global__ void global_entry(__grid_constant__ Operator::Params const params) {
|
|
extern __shared__ char smem[];
|
|
|
|
Operator op;
|
|
op(params, smem);
|
|
}
|
|
|
|
)""";
|
|
|
|
struct TestbedKernel {
|
|
static bool compile(std::string const &kernel, std::vector<const char *> const &opts) {
|
|
int sz = std::snprintf(nullptr, 0, cuda_source_fmt, kernel.c_str());
|
|
std::vector<char> cuda_source(sz + 1);
|
|
std::snprintf(&cuda_source[0], cuda_source.size(), cuda_source_fmt, kernel.c_str());
|
|
|
|
nvrtcProgram program;
|
|
NVRTC_RETURN_IF_ERROR(
|
|
nvrtcCreateProgram(
|
|
&program,
|
|
cuda_source.data(),
|
|
nullptr,
|
|
static_cast<int32_t>(cutlass::nvrtc::kCutlassHeaderCount),
|
|
cutlass::nvrtc::kCutlassHeaders,
|
|
cutlass::nvrtc::kCutlassHeaderNames)
|
|
);
|
|
|
|
nvrtcResult compile_result =
|
|
nvrtcCompileProgram(
|
|
program,
|
|
static_cast<int32_t>(opts.size()),
|
|
opts.data());
|
|
|
|
size_t log_size;
|
|
NVRTC_RETURN_IF_ERROR(
|
|
nvrtcGetProgramLogSize(program, &log_size)
|
|
);
|
|
|
|
if (log_size > 1) {
|
|
auto log = std::make_unique<char[]>(log_size);
|
|
|
|
NVRTC_RETURN_IF_ERROR(
|
|
nvrtcGetProgramLog(program, log.get())
|
|
);
|
|
|
|
std::cout << log.get() << std::endl;
|
|
}
|
|
|
|
NVRTC_RETURN_IF_ERROR(compile_result);
|
|
|
|
NVRTC_RETURN_IF_ERROR(
|
|
nvrtcDestroyProgram(&program)
|
|
);
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// Structure to compute the matrix product
|
|
template <
|
|
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
|
typename Shape,
|
|
/// Data type of A elements
|
|
typename ElementA,
|
|
/// Layout of A matrix (concept: MatrixLayout)
|
|
typename LayoutA,
|
|
/// Data type of B elements
|
|
typename ElementB,
|
|
/// Layout of B matrix (concept: MatrixLayout)
|
|
typename LayoutB,
|
|
/// Element type of C matrix
|
|
typename ElementC,
|
|
/// Layout of C matrix (concept: MatrixLayout)
|
|
typename LayoutC
|
|
>
|
|
struct Testbed {
|
|
|
|
/// Thread-level matrix multiply-accumulate operator
|
|
using Mma = cutlass::gemm::thread::Mma<
|
|
Shape,
|
|
ElementA,
|
|
LayoutA,
|
|
ElementB,
|
|
LayoutB,
|
|
ElementC,
|
|
LayoutC
|
|
>;
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
|
|
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
|
|
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
|
|
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
|
|
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Allocates workspace in device memory
|
|
Testbed() {
|
|
|
|
tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK));
|
|
tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN));
|
|
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
|
|
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
|
|
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
|
|
}
|
|
|
|
static inline bool check_nvrtc_error(nvrtcResult error) {
|
|
if (error != NVRTC_SUCCESS) {
|
|
std::cerr << "failed to compile ";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Runs the test
|
|
bool run(std::string const &gemm_traits) {
|
|
|
|
//
|
|
// initialize device memory
|
|
//
|
|
|
|
cutlass::reference::host::BlockFillSequential(
|
|
tensor_A.host_data(),
|
|
tensor_A.capacity()
|
|
);
|
|
|
|
cutlass::reference::host::BlockFillSequential(
|
|
tensor_B.host_data(),
|
|
tensor_B.capacity(),
|
|
ElementB(1),
|
|
ElementB(2)
|
|
);
|
|
|
|
cutlass::reference::host::TensorFill(
|
|
tensor_C.host_view(),
|
|
ElementC(0)
|
|
);
|
|
|
|
cutlass::reference::host::TensorFill(
|
|
tensor_D_computed.host_view(),
|
|
ElementC(0)
|
|
);
|
|
|
|
cutlass::reference::host::TensorFill(
|
|
tensor_D_reference.host_view(),
|
|
ElementC(0)
|
|
);
|
|
|
|
tensor_A.sync_device();
|
|
tensor_B.sync_device();
|
|
tensor_C.sync_device();
|
|
tensor_D_computed.sync_device();
|
|
|
|
#if 0
|
|
// launch kernel
|
|
cutlass::gemm::kernel::testbed_kernel<Mma><<< dim3(1, 1), dim3(1, 1, 1) >>>(
|
|
tensor_D_computed.device_data(),
|
|
tensor_A.device_data(),
|
|
tensor_B.device_data(),
|
|
tensor_C.device_data());
|
|
|
|
#else
|
|
// Instantiate gemm_kernel
|
|
nvrtcResult result_nvrtc;
|
|
nvrtcProgram program;
|
|
static char const *src =
|
|
"#include \"cutlass/gemm/thread/mma.h\"\n"
|
|
"#include \"cutlass/gemm/gemm.h\"\n"
|
|
"#include \"cutlass/layout/matrix.h\"\n"
|
|
"#include \"unit/nvrtc/kernel/thread/testbed_kernel.h\"\n"
|
|
;
|
|
|
|
std::string type_name;
|
|
#if 0
|
|
// TODO Ideally we'd use nvrtcGetTypeName to determine the type, but it cannot resolve enum symbol names
|
|
// As altername solution we might want to implement to_string<GemmTraits>() to get the traits string.
|
|
nvrtcGetTypeName<typename GemmTraits_>(&type_name);
|
|
#else
|
|
type_name = gemm_traits;
|
|
#endif
|
|
|
|
result_nvrtc = nvrtcCreateProgram(&program,
|
|
src,
|
|
NULL,
|
|
(int)cutlass::nvrtc::kCutlassHeaderCount,
|
|
cutlass::nvrtc::kCutlassHeaders,
|
|
cutlass::nvrtc::kCutlassHeaderNames);
|
|
check_nvrtc_error(result_nvrtc);
|
|
|
|
std::string gemm_kernel_instantiation =
|
|
"test::nvrtc::kernel::thread::testbed_kernel< " + type_name + " >";
|
|
nvrtcAddNameExpression(program, gemm_kernel_instantiation.c_str());
|
|
|
|
const char *opts[] = {"--gpu-architecture=compute_75",
|
|
"--std=c++17",
|
|
"--include-path=/usr/local/cuda-10.1/include"};
|
|
|
|
result_nvrtc = nvrtcCompileProgram(program, 3, opts);
|
|
if (result_nvrtc != NVRTC_SUCCESS) {
|
|
size_t logSize;
|
|
nvrtcGetProgramLogSize(program, &logSize);
|
|
std::vector<char> log(logSize);
|
|
nvrtcGetProgramLog(program, log.data());
|
|
std::cout << "Compile log:" << std::endl << log.data() << std::endl;
|
|
}
|
|
if (!check_nvrtc_error(result_nvrtc)) {
|
|
assert(0);
|
|
}
|
|
|
|
// The lowered name is the name of the template instantiation in the generated PTX code.
|
|
char const *gemm_kernel_lowered_name;
|
|
nvrtcGetLoweredName(program, gemm_kernel_instantiation.c_str(), &gemm_kernel_lowered_name);
|
|
if (!check_nvrtc_error(result_nvrtc)) {
|
|
assert(0);
|
|
}
|
|
|
|
// Query the size of the genereated PTX so that we can allocate storage and retrieve it afterwards
|
|
size_t ptx_size;
|
|
result_nvrtc = nvrtcGetPTXSize(program, &ptx_size);
|
|
if (!check_nvrtc_error(result_nvrtc)) {
|
|
assert(0);
|
|
}
|
|
|
|
std::vector<char> ptx(ptx_size);
|
|
result_nvrtc = nvrtcGetPTX(program, ptx.data());
|
|
if (!check_nvrtc_error(result_nvrtc)) {
|
|
assert(0);
|
|
}
|
|
|
|
// we do not need the nvrtc program anymore
|
|
//nvrtcDestroyProgram(&program);
|
|
|
|
CUmodule module;
|
|
CUresult result_cuda;
|
|
result_cuda = cuModuleLoadDataEx(&module, ptx.data(), 0, 0, 0);
|
|
if (result_cuda != CUDA_SUCCESS) {
|
|
assert(0);
|
|
}
|
|
|
|
CUfunction kernel;
|
|
result_cuda = cuModuleGetFunction(&kernel, module, gemm_kernel_lowered_name);
|
|
if (result_cuda != CUDA_SUCCESS) {
|
|
assert(0);
|
|
}
|
|
|
|
void* d_a = (void*)tensor_A.device_data();
|
|
void* d_b = (void*)tensor_B.device_data();
|
|
void* d_c = (void*)tensor_C.device_data();
|
|
void* d_d = (void*)tensor_D_computed.device_data();
|
|
void* args[] = { &d_d, &d_a, &d_b, &d_c };
|
|
|
|
// CUfunction f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream hStream, void** kernelParams, void** extra
|
|
result_cuda = cuLaunchKernel(kernel, 1, 1, 1, 1, 1, 1, 0, 0 /*cudaStreamDefault*/, args, 0);
|
|
if (result_cuda != CUDA_SUCCESS) {
|
|
assert(0);
|
|
} else {
|
|
}
|
|
#endif
|
|
|
|
// verify no errors
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
|
|
if (result != cudaSuccess) {
|
|
std::cout << "CUDA ERROR: " << cudaGetErrorString(result);
|
|
return false;
|
|
}
|
|
|
|
tensor_D_computed.sync_host();
|
|
|
|
//
|
|
// Reference implementation
|
|
//
|
|
|
|
//tensor_D_reference.fill(tensor_C.host_view());
|
|
|
|
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
|
|
ElementC, LayoutC, ElementC, ElementC> reference_gemm;
|
|
|
|
reference_gemm(
|
|
{Shape::kM, Shape::kN, Shape::kK},
|
|
ElementC(1),
|
|
tensor_A.host_ref(),
|
|
tensor_B.host_ref(),
|
|
ElementC(0),
|
|
tensor_D_reference.host_ref()
|
|
);
|
|
|
|
//
|
|
// Verify equivalence
|
|
//
|
|
|
|
// compare
|
|
bool passed = cutlass::reference::host::TensorEquals(
|
|
tensor_D_computed.host_view(),
|
|
tensor_D_reference.host_view()
|
|
);
|
|
|
|
if(!passed) std::cout
|
|
<< "A:\n" << tensor_A.host_view() << "\n\n"
|
|
<< "B:\n" << tensor_B.host_view() << "\n\n"
|
|
<< "C:\n" << tensor_C.host_view() << "\n\n"
|
|
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
|
|
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
|
|
|
|
std::cout << "passed " << passed << std::endl;
|
|
|
|
return passed;
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace thread
|
|
} // namespace nvrtc
|
|
} // namespace test
|