cutlass/test/unit/gemm/warp/testbed.h

1544 lines
48 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/numeric_types.h"
#include "cutlass/subbyte_reference.h"
#include "cutlass/platform/platform.h"
#include "cutlass/arch/arch.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/reference/host/gemm.h"
#include "cutlass/util/reference/host/gemm_complex.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/host_reorder.h"
#include "cutlass/util/host_uncompress.h"
namespace test {
namespace gemm {
namespace warp {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Test kernel
template <typename Mma, typename ThreadblockShape>
__global__ void kernel(
typename Mma::ElementC *output_C,
typename Mma::ElementA const *input_A,
typename Mma::ElementB const *input_B,
typename Mma::ElementC const *input_C,
int iterations = 1) {
// Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers.
__shared__ cutlass::AlignedBuffer<
typename Mma::ElementA, ThreadblockShape::kM * ThreadblockShape::kK> smem_buffer_A;
__shared__ cutlass::AlignedBuffer<
typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B;
if (threadIdx.x == 0) {
typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data();
#pragma unroll 1
for (size_t i = 0; i < smem_buffer_A.size(); ++i) {
cutlass::ReferenceFactory<typename Mma::ElementA>::get(smem_ptr_A, i) =
cutlass::ReferenceFactory<typename cutlass::platform::remove_const<
typename Mma::ElementA>::type>::get(input_A, i);
}
typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data();
#pragma unroll 1
for (size_t i = 0; i < smem_buffer_B.size(); ++i) {
cutlass::ReferenceFactory<typename Mma::ElementB>::get(smem_ptr_B, i) =
cutlass::ReferenceFactory<typename cutlass::platform::remove_const<
typename Mma::ElementB>::type>::get(input_B, i);
}
}
__syncthreads();
//
// Construct warp-level matrix product
//
using FragmentA = typename Mma::FragmentA;
using FragmentB = typename Mma::FragmentB;
using FragmentC = typename Mma::FragmentC;
typename Mma::LayoutA layout_A = Mma::LayoutA::packed({ThreadblockShape::kM, ThreadblockShape::kK});
typename Mma::LayoutB layout_B = Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN});
typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN});
typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, cutlass::arch::LaneId());
typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, cutlass::arch::LaneId());
FragmentA frag_A;
FragmentB frag_B;
FragmentC accum;
Mma mma;
accum.clear();
CUTLASS_PRAGMA_NO_UNROLL
for (int iter = 0; iter < iterations; ++iter) { // place in loop that is not unrolled
CUTLASS_PRAGMA_UNROLL
for (int k = 0; k < ThreadblockShape::kK;
k += Mma::Policy::MmaShape::kK) {
iter_A.load(frag_A);
iter_B.load(frag_B);
++iter_A;
++iter_B;
mma(accum, frag_A, frag_B, accum);
}
}
typename Mma::IteratorC iter_C({output_C, layout_C}, cutlass::arch::LaneId());
iter_C.store(accum);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product
template <
/// Warp-level matrix multiply-accumulate
typename Mma_,
/// Size of threadblock-scoped shape used to store SMEM
typename ThreadblockShape_,
/// The inner product operation performed by GEMM
typename Operator_ = cutlass::arch::OpMultiplyAdd
>
struct Testbed {
/// Thread-level matrix multiply-accumulate operator
using Mma = Mma_;
using ThreadblockShape = ThreadblockShape_;
using Operator = Operator_;
using Shape = typename Mma::Shape;
using ElementA = typename Mma::ElementA;
using LayoutA = typename Mma::LayoutA;
using ElementB = typename Mma::ElementB;
using LayoutB = typename Mma::LayoutB;
using ElementC = typename Mma::ElementC;
using LayoutC = typename Mma::LayoutC;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
//
// Methods
//
/// Allocates workspace in device memory
Testbed() {
tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK));
tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.major == 9) {
// NVIDIA Hopper drops support for several data types
if (
cutlass::sizeof_bits<ElementA>::value < 8 ||
cutlass::sizeof_bits<ElementB>::value < 8 ||
cutlass::sizeof_bits<ElementC>::value < 8) {
return false;
}
}
return true;
}
/// Runs the test
bool run(
cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) {
if (!sufficient()) {
return true;
}
//
// initialize device memory
//
if (init_A == cutlass::Distribution::Uniform) {
int scope_max = 8;
int scope_min = -8;
if (cutlass::sizeof_bits<ElementA>::value == 4) {
scope_max = 2;
scope_min = -2;
} else if (cutlass::sizeof_bits<ElementA>::value == 1) {
scope_max = 2;
scope_min = 0;
}
uint64_t seed = 7;
cutlass::reference::host::BlockFillRandomUniform(tensor_A.host_data(),
tensor_A.capacity(), seed, scope_max, scope_min, 0);
} else if (init_A == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_A.host_data(),
tensor_A.capacity());
} else if (init_A == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_A.host_view());
} else {
return false;
}
if (init_B == cutlass::Distribution::Uniform) {
int scope_max = 8;
int scope_min = -8;
if (cutlass::sizeof_bits<ElementB>::value == 4) {
scope_max = 2;
scope_min = -2;
} else if (cutlass::sizeof_bits<ElementB>::value == 1) {
scope_max = 2;
scope_min = 0;
}
uint64_t seed = 7;
cutlass::reference::host::BlockFillRandomUniform(tensor_B.host_data(),
tensor_B.capacity(), seed, scope_max, scope_min, 0);
} else if (init_B == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_B.host_data(),
tensor_B.capacity());
} else if (init_B == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_B.host_view());
} else {
return false;
}
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
// launch kernel
kernel<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>(
tensor_D_computed.device_data(),
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data());
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result);
if (result != cudaSuccess) {
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
ElementC, LayoutC, ElementC, ElementC,
Operator>
reference_gemm;
reference_gemm(
{Shape::kM, Shape::kN, ThreadblockShape::kK},
ElementC(1),
tensor_A.host_ref(),
tensor_B.host_ref(),
ElementC(0),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
EXPECT_TRUE(passed);
if (!passed) {
cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical(
tensor_A.host_data(),
tensor_A.stride()[0],
tensor_A.extent());
cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical(
tensor_B.host_data(),
tensor_B.stride()[0],
tensor_B.extent());
std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n";
std::cout
<< "A:\n" << tensor_A.host_view() << "\n\n"
<< "A(physical - stride: " << tensor_A.stride()[0]
<< ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n";
std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n";
std::cout
<< "B:\n" << tensor_B.host_view() << "\n\n"
<< "B(physical - stride: " << tensor_B.stride()[0]
<< ", extent: " << tensor_B.extent() << "):\n" << tensor_B_physical << "\n\n";
std::cout
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product
template <
/// Warp-level matrix multiply-accumulate
typename Mma_,
/// Size of threadblock-scoped shape used to store SMEM
typename ThreadblockShape_
>
struct TestbedComplex {
/// Thread-level matrix multiply-accumulate operator
using Mma = Mma_;
using ThreadblockShape = ThreadblockShape_;
using Shape = typename Mma::Shape;
using ElementA = typename Mma::ElementA;
using LayoutA = typename Mma::LayoutA;
using ElementB = typename Mma::ElementB;
using LayoutB = typename Mma::LayoutB;
using ElementC = typename Mma::ElementC;
using LayoutC = typename Mma::LayoutC;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
//
// Methods
//
/// Allocates workspace in device memory
TestbedComplex() {
tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK));
tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.major == 9) {
// NVIDIA Hopper drops support for several data types
if (
cutlass::sizeof_bits<ElementA>::value < 8 ||
cutlass::sizeof_bits<ElementB>::value < 8 ||
cutlass::sizeof_bits<ElementC>::value < 8) {
return false;
}
}
return true;
}
/// Runs the test
bool run(
cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) {
if (!sufficient()) {
return true;
}
//
// initialize device memory
//
if (init_A == cutlass::Distribution::Uniform) {
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(tensor_A.host_view(),
seed, 8, -8, 0);
} else if (init_A == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_A.host_data(),
tensor_A.capacity());
} else if (init_A == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_A.host_view());
} else {
return false;
}
if (init_B == cutlass::Distribution::Uniform) {
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(tensor_B.host_view(),
seed + 16, 8, -8, 0);
} else if (init_B == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_B.host_data(),
tensor_B.capacity());
} else if (init_B == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_B.host_view());
} else {
return false;
}
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
// launch kernel
kernel<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>(
tensor_D_computed.device_data(),
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data());
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result);
if (result != cudaSuccess) {
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
cutlass::reference::host::GemmComplex(
{Shape::kM, Shape::kN, ThreadblockShape::kK},
ElementC(1),
tensor_A.host_ref(),
Mma::kTransformA,
tensor_B.host_ref(),
Mma::kTransformB,
ElementC(0),
tensor_C.host_ref(),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
EXPECT_TRUE(passed);
if (!passed) {
cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical(
tensor_A.host_data(),
tensor_A.stride()[0],
tensor_A.extent());
cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical(
tensor_B.host_data(),
tensor_B.stride()[0],
tensor_B.extent());
std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n";
std::cout
<< "A:\n" << tensor_A.host_view() << "\n\n"
<< "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n";
std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n";
std::cout
<< "B:\n" << tensor_B.host_view() << "\n\n"
<< "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() <<"):\n" << tensor_B_physical << "\n\n";
std::cout
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Test kernel
template <typename Mma, typename ThreadblockShape>
__global__ void kernel_transform(
typename Mma::ElementC *output_C,
typename Mma::ElementA const *input_A,
typename Mma::ElementB const *input_B,
typename Mma::ElementC const *input_C,
int iterations = 1) {
// Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers.
__shared__ cutlass::AlignedBuffer<
typename Mma::ElementA, ThreadblockShape::kM * ThreadblockShape::kK> smem_buffer_A;
__shared__ cutlass::AlignedBuffer<
typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B;
if (threadIdx.x == 0) {
typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data();
#pragma unroll 1
for (size_t i = 0; i < smem_buffer_A.size(); ++i) {
cutlass::ReferenceFactory<typename Mma::ElementA>::get(smem_ptr_A, i) =
cutlass::ReferenceFactory<typename cutlass::platform::remove_const<
typename Mma::ElementA>::type>::get(input_A, i);
}
typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data();
#pragma unroll 1
for (size_t i = 0; i < smem_buffer_B.size(); ++i) {
cutlass::ReferenceFactory<typename Mma::ElementB>::get(smem_ptr_B, i) =
cutlass::ReferenceFactory<typename cutlass::platform::remove_const<
typename Mma::ElementB>::type>::get(input_B, i);
}
}
__syncthreads();
//
// Construct warp-level matrix product
//
using FragmentA = typename Mma::FragmentA;
using FragmentB = typename Mma::FragmentB;
using FragmentC = typename Mma::FragmentC;
using TransformedFragmentA = typename Mma::TransformedFragmentA;
using TransformedFragmentB = typename Mma::TransformedFragmentB;
typename Mma::LayoutA layout_A = Mma::LayoutA::packed({ThreadblockShape::kM, ThreadblockShape::kK});
typename Mma::LayoutB layout_B = Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN});
typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN});
typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, cutlass::arch::LaneId());
typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, cutlass::arch::LaneId());
FragmentA loaded_frag_A;
FragmentB loaded_frag_B;
TransformedFragmentA transformed_frag_A;
TransformedFragmentB transformed_frag_B;
FragmentC accum;
Mma mma;
accum.clear();
CUTLASS_PRAGMA_NO_UNROLL
for (int iter = 0; iter < iterations; ++iter) { // place in loop that is not unrolled
CUTLASS_PRAGMA_UNROLL
for (int k = 0; k < ThreadblockShape::kK;
k += Mma::Policy::MmaShape::kK) {
iter_A.load(loaded_frag_A);
iter_B.load(loaded_frag_B);
++iter_A;
++iter_B;
mma.transform(transformed_frag_A, transformed_frag_B, loaded_frag_A,
loaded_frag_B);
mma(accum, transformed_frag_A, transformed_frag_B, accum);
}
}
typename Mma::IteratorC iter_C({output_C, layout_C}, cutlass::arch::LaneId());
iter_C.store(accum);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product
template <
/// Warp-level matrix multiply-accumulate
typename Mma_,
/// Size of threadblock-scoped shape used to store SMEM
typename ThreadblockShape_,
/// The innter product operation performed by GEMM
typename Operator_ = cutlass::arch::OpMultiplyAdd
>
struct TransformTestbed {
/// Thread-level matrix multiply-accumulate operator
using Mma = Mma_;
using ThreadblockShape = ThreadblockShape_;
using Operator = Operator_;
using Shape = typename Mma::Shape;
using ElementA = typename Mma::ElementA;
using LayoutA = typename Mma::LayoutA;
using ElementB = typename Mma::ElementB;
using LayoutB = typename Mma::LayoutB;
using ElementC = typename Mma::ElementC;
using LayoutC = typename Mma::LayoutC;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
//
// Methods
//
/// Allocates workspace in device memory
TransformTestbed() {
tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK));
tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.major == 9) {
// NVIDIA Hopper drops support for several data types
if (
cutlass::sizeof_bits<ElementA>::value < 8 ||
cutlass::sizeof_bits<ElementB>::value < 8 ||
cutlass::sizeof_bits<ElementC>::value < 8) {
return false;
}
}
return true;
}
/// Runs the test
bool run(
cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) {
if (!sufficient()) {
return true;
}
//
// initialize device memory
//
if (init_A == cutlass::Distribution::Uniform) {
int scope_max = 8;
int scope_min = -8;
if (cutlass::sizeof_bits<ElementA>::value == 4) {
scope_max = 2;
scope_min = -2;
} else if (cutlass::sizeof_bits<ElementA>::value == 1) {
scope_max = 2;
scope_min = 0;
}
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(
tensor_A.host_view(), seed, scope_max, scope_min, 0);
} else if (init_A == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_A.host_data(),
tensor_A.capacity());
} else if (init_A == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_A.host_view());
} else {
return false;
}
if (init_B == cutlass::Distribution::Uniform) {
int scope_max = 8;
int scope_min = -8;
if (cutlass::sizeof_bits<ElementB>::value == 4) {
scope_max = 2;
scope_min = -2;
} else if (cutlass::sizeof_bits<ElementB>::value == 1) {
scope_max = 2;
scope_min = 0;
}
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(
tensor_B.host_view(), seed + 16, scope_max, scope_min, 0);
} else if (init_B == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_B.host_data(),
tensor_B.capacity());
} else if (init_B == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_B.host_view());
} else {
return false;
}
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
// launch kernel
kernel_transform<Mma, ThreadblockShape><<<dim3(1, 1), dim3(32, 1, 1)>>>(
tensor_D_computed.device_data(), tensor_A.device_data(),
tensor_B.device_data(), tensor_C.device_data());
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result);
if (result != cudaSuccess) {
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
ElementC, LayoutC, ElementC, ElementC,
Operator>
reference_gemm;
reference_gemm(
{Shape::kM, Shape::kN, ThreadblockShape::kK},
ElementC(1),
tensor_A.host_ref(),
tensor_B.host_ref(),
ElementC(0),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
EXPECT_TRUE(passed);
if (!passed) {
cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical(
tensor_A.host_data(),
tensor_A.stride()[0],
tensor_A.extent());
cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical(
tensor_B.host_data(),
tensor_B.stride()[0],
tensor_B.extent());
std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n";
std::cout
<< "A:\n" << tensor_A.host_view() << "\n\n"
<< "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n";
std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n";
std::cout
<< "B:\n" << tensor_B.host_view() << "\n\n"
<< "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() << "):\n" << tensor_B_physical << "\n\n";
std::cout
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product
template <
/// Warp-level matrix multiply-accumulate
typename Mma_,
/// Size of threadblock-scoped shape used to store SMEM
typename ThreadblockShape_
>
struct TransformedTestbedComplex {
/// Thread-level matrix multiply-accumulate operator
using Mma = Mma_;
using ThreadblockShape = ThreadblockShape_;
using Shape = typename Mma::Shape;
using ElementA = typename Mma::ElementA;
using LayoutA = typename Mma::LayoutA;
using ElementB = typename Mma::ElementB;
using LayoutB = typename Mma::LayoutB;
using ElementC = typename Mma::ElementC;
using LayoutC = typename Mma::LayoutC;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
//
// Methods
//
/// Allocates workspace in device memory
TransformedTestbedComplex() {
tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK));
tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.major == 9) {
// NVIDIA Hopper drops support for several data types
if (
cutlass::sizeof_bits<ElementA>::value < 8 ||
cutlass::sizeof_bits<ElementB>::value < 8 ||
cutlass::sizeof_bits<ElementC>::value < 8) {
return false;
}
}
return true;
}
/// Runs the test
bool run(
cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) {
if (!sufficient()) {
return true;
}
//
// initialize device memory
//
if (init_A == cutlass::Distribution::Uniform) {
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(tensor_A.host_view(),
seed, 8, -8, 0);
} else if (init_A == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_A.host_data(),
tensor_A.capacity());
} else if (init_A == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_A.host_view());
} else {
return false;
}
if (init_B == cutlass::Distribution::Uniform) {
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(tensor_B.host_view(),
seed + 16, 8, -8, 0);
} else if (init_B == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_B.host_data(),
tensor_B.capacity());
} else if (init_B == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_B.host_view());
} else {
return false;
}
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
// launch kernel
kernel_transform<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>(
tensor_D_computed.device_data(),
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data());
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result);
if (result != cudaSuccess) {
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
cutlass::reference::host::GemmComplex(
{Shape::kM, Shape::kN, ThreadblockShape::kK},
ElementC(1),
tensor_A.host_ref(),
Mma::kTransformA,
tensor_B.host_ref(),
Mma::kTransformB,
ElementC(0),
tensor_C.host_ref(),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
EXPECT_TRUE(passed);
if (!passed) {
cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical(
tensor_A.host_data(),
tensor_A.stride()[0],
tensor_A.extent());
cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical(
tensor_B.host_data(),
tensor_B.stride()[0],
tensor_B.extent());
std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n";
std::cout
<< "A:\n" << tensor_A.host_view() << "\n\n"
<< "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n";
std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n";
std::cout
<< "B:\n" << tensor_B.host_view() << "\n\n"
<< "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() <<"):\n" << tensor_B_physical << "\n\n";
std::cout
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Test kernel
template <typename Mma, typename ThreadblockShape>
__global__ void sparse_kernel(
typename Mma::ElementC *output_C,
typename Mma::ElementA const *input_A,
typename Mma::ElementB const *input_B,
typename Mma::ElementC const *input_C,
typename Mma::ElementE const *input_E,
int iterations = 1) {
// Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers.
__shared__ cutlass::AlignedBuffer<typename Mma::ElementA,
ThreadblockShape::kM *
ThreadblockShape::kK / Mma::kSparse>
smem_buffer_A;
__shared__ cutlass::AlignedBuffer<
typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B;
__shared__ cutlass::AlignedBuffer<
typename Mma::ElementE, Mma::Shape::kM * Mma::Shape::kK /
Mma::kSparse / Mma::kElementsPerElementE>
smem_buffer_E;
__syncthreads();
if (threadIdx.x == 0) {
typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data();
#pragma unroll 1
for (size_t i = 0; i < smem_buffer_A.size(); ++i) {
cutlass::ReferenceFactory<typename Mma::ElementA>::get(smem_ptr_A, i) =
cutlass::ReferenceFactory<typename cutlass::platform::remove_const<
typename Mma::ElementA>::type>::get(input_A, i);
}
typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data();
#pragma unroll 1
for (size_t i = 0; i < smem_buffer_B.size(); ++i) {
cutlass::ReferenceFactory<typename Mma::ElementB>::get(smem_ptr_B, i) =
cutlass::ReferenceFactory<typename cutlass::platform::remove_const<
typename Mma::ElementB>::type>::get(input_B, i);
}
typename Mma::ElementE *smem_ptr_E = smem_buffer_E.data();
#pragma unroll 1
for (size_t i = 0; i < smem_buffer_E.size(); ++i) {
cutlass::ReferenceFactory<typename Mma::ElementE>::get(smem_ptr_E, i) =
cutlass::ReferenceFactory<typename cutlass::platform::remove_const<
typename Mma::ElementE>::type>::get(input_E, i);
}
}
__syncthreads();
//
// Construct warp-level matrix product
//
using FragmentA = typename Mma::FragmentA;
using FragmentB = typename Mma::FragmentB;
using FragmentC = typename Mma::FragmentC;
using FragmentE = typename Mma::FragmentE;
typename Mma::LayoutA layout_A = Mma::LayoutA::packed(
{ThreadblockShape::kM, ThreadblockShape::kK / Mma::kSparse});
typename Mma::LayoutB layout_B =
Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN});
typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN});
typename Mma::LayoutE layout_E =
Mma::LayoutE::packed({Mma::Shape::kM * Mma::kInterleaved,
Mma::Shape::kK / Mma::kSparse /
Mma::kElementsPerElementE / Mma::kInterleaved});
typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, cutlass::arch::LaneId());
typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, cutlass::arch::LaneId());
typename Mma::IteratorE iter_E({smem_buffer_E.data(), layout_E}, cutlass::arch::LaneId());
FragmentA frag_A;
FragmentB frag_B;
FragmentC accum;
FragmentE frag_E;
Mma mma;
accum.clear();
CUTLASS_PRAGMA_NO_UNROLL
for (int iter = 0; iter < iterations; ++iter) { // place in loop that is not unrolled
CUTLASS_PRAGMA_UNROLL
for (int k = 0; k < ThreadblockShape::kK;
k += Mma::Policy::MmaShape::kK) {
iter_A.load(frag_A);
iter_B.load(frag_B);
iter_E.load(frag_E);
++iter_A;
++iter_B;
++iter_E;
mma(accum, frag_A, frag_B, accum, frag_E);
}
}
typename Mma::IteratorC iter_C({output_C, layout_C}, cutlass::arch::LaneId());
iter_C.store(accum);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product
template <
/// Warp-level matrix multiply-accumulate
typename Mma_,
/// Size of threadblock-scoped shape used to store SMEM
typename ThreadblockShape_,
/// The innter product operation performed by GEMM
typename Operator_ = cutlass::arch::OpMultiplyAdd
>
struct SparseTestbed {
/// Thread-level matrix multiply-accumulate operator
using Mma = Mma_;
using ThreadblockShape = ThreadblockShape_;
using Operator = Operator_;
using Shape = typename Mma::Shape;
using ElementA = typename Mma::ElementA;
using LayoutA = typename Mma::LayoutA;
using ElementB = typename Mma::ElementB;
using LayoutB = typename Mma::LayoutB;
using ElementC = typename Mma::ElementC;
using LayoutC = typename Mma::LayoutC;
static int const Sparse = Mma::kSparse;
static int const MetaSizeInBits = Mma::kMetaSizeInBits;
static int const MaxID2 = Mma::kMaxID2;
static int const Interleaved = Mma::kInterleaved;
using ElementE = typename Mma::ElementE;
static int const ElementsPerElementE = Mma::kElementsPerElementE;
using LayoutE = cutlass::layout::RowMajor;
using ReorderedLayoutE =
cutlass::layout::ColumnMajorInterleaved<Interleaved>;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementA, LayoutA> tensor_A_uncompressed;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
cutlass::HostTensor<ElementE, LayoutE> tensor_E;
cutlass::HostTensor<ElementE, ReorderedLayoutE> tensor_E_reordered;
//
// Methods
//
/// Allocates workspace in device memory
SparseTestbed() {
tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM,
ThreadblockShape::kK / Sparse));
tensor_A_uncompressed.reset(
cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK));
tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
tensor_E.reset(cutlass::make_Coord(
Shape::kM, Shape::kK / Sparse / ElementsPerElementE));
tensor_E_reordered.reset(cutlass::make_Coord(
Shape::kM, Shape::kK / Sparse / ElementsPerElementE));
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.major == 9) {
// NVIDIA Hopper drops support for several data types
if (
cutlass::sizeof_bits<ElementA>::value < 8 ||
cutlass::sizeof_bits<ElementB>::value < 8 ||
cutlass::sizeof_bits<ElementC>::value < 8) {
return false;
}
}
return true;
}
/// Runs the test
bool run(
cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_E = cutlass::Distribution::Uniform) {
if (!sufficient()) {
return true;
}
//
// initialize device memory
//
if (init_A == cutlass::Distribution::Uniform) {
int scope_max = 8;
int scope_min = -8;
if (cutlass::sizeof_bits<ElementA>::value == 4) {
scope_max = 2;
scope_min = -2;
} else if (cutlass::sizeof_bits<ElementA>::value == 1) {
scope_max = 2;
scope_min = 0;
}
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(
tensor_A.host_view(), seed, scope_max, scope_min, 0);
} else if (init_A == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_A.host_data(),
tensor_A.capacity());
} else if (init_A == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_A.host_view());
} else {
return false;
}
if (init_B == cutlass::Distribution::Uniform) {
int scope_max = 8;
int scope_min = -8;
if (cutlass::sizeof_bits<ElementB>::value == 4) {
scope_max = 2;
scope_min = -2;
} else if (cutlass::sizeof_bits<ElementB>::value == 1) {
scope_max = 2;
scope_min = 0;
}
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomUniform(
tensor_B.host_view(), seed + 16, scope_max, scope_min, 0);
} else if (init_B == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(tensor_B.host_data(),
tensor_B.capacity());
} else if (init_B == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(tensor_B.host_view());
} else {
return false;
}
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
if (init_E == cutlass::Distribution::Uniform) {
uint64_t seed = 7;
cutlass::reference::host::TensorFillRandomSparseMeta(
tensor_E.host_view(), seed, MetaSizeInBits);
} else if (init_E == cutlass::Distribution::Identity) {
uint32_t content = (MaxID2 == 1) ? 0x44444444 : 0x4444;
cutlass::reference::host::TensorFill(tensor_E.host_view(),
(ElementE)(content));
} else {
return false;
}
cutlass::reorder_meta(
tensor_E_reordered.host_ref(), tensor_E.host_ref(),
{Shape::kM, Shape::kN, Shape::kK / Sparse / ElementsPerElementE});
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
tensor_E_reordered.sync_device();
// launch kernel
sparse_kernel<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>(
tensor_D_computed.device_data(),
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data(),
tensor_E_reordered.device_data());
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result);
if (result != cudaSuccess) {
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
cutlass::uncompress(tensor_A_uncompressed.host_ref(), tensor_A.host_ref(),
tensor_E.host_ref(), Shape::kM, Shape::kK);
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
ElementC, LayoutC, ElementC, ElementC,
Operator>
reference_gemm;
reference_gemm(
{Shape::kM, Shape::kN, ThreadblockShape::kK},
ElementC(1),
tensor_A_uncompressed.host_ref(),
tensor_B.host_ref(),
ElementC(0),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
EXPECT_TRUE(passed);
if (!passed) {
std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n";
std::cout << "A:\n" << tensor_A.host_view() << "\n\n";
std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n";
std::cout << "B:\n" << tensor_B.host_view() << "\n\n";
std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementE>::value<<"\n";
std::cout << "E:\n" << tensor_E.host_view() << "\n\n";
std::cout
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << "\n";
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace warp
} // namespace gemm
} // namespace test