cutlass/test/unit/gemm/warp/gemm_complex_sm80.cu

699 lines
22 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include "cutlass/cutlass.h"
#include "../../common/cutlass_unit_test.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/half.h"
#include "cutlass/gemm/warp/default_mma_complex_tensor_op.h"
#include "cutlass/core_io.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "testbed.h"
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
////////////////////////////////////////////////////////////////////////////////////////////////////
// complex<double> * complex<double> => complex<double>
// Input data type: complex<double>
// Math instruction: mma.sync.aligned.m8n8k4.f64.f64.f64.f64
// Output data type: complex<double>
///////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_warp_gemm_complex_tensor_op_f64, 8x8x4_8x8x4_nt) {
using Shape = cutlass::gemm::GemmShape<8, 8, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous128b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous128b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<8, 8, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 16x16x4_8x8x4_nt) {
using Shape = cutlass::gemm::GemmShape<16, 16, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous128b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous128b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<16, 16, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 16x32x4_8x8x4_nt) {
using Shape = cutlass::gemm::GemmShape<16, 32, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous128b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous128b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<16, 32, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 32x16x4_8x8x4_nt) {
using Shape = cutlass::gemm::GemmShape<32, 16, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous128b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous128b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<32, 16, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 32x32x4_8x8x4_nt) {
using Shape = cutlass::gemm::GemmShape<32, 32, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous128b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous128b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 32x32x4_8x8x4_nh) {
using Shape = cutlass::gemm::GemmShape<32, 32, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous128b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous128b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kConjugate
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 32x32x4_8x8x4_ct) {
using Shape = cutlass::gemm::GemmShape<32, 32, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous128b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous128b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
cutlass::ComplexTransform::kConjugate,
cutlass::ComplexTransform::kNone
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 8x8x4_8x8x4_tn) {
using Shape = cutlass::gemm::GemmShape<8, 8, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise128x4;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise128x4;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<8, 8, 4> >().run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f64, 16x16x4_8x8x4_tn) {
using Shape = cutlass::gemm::GemmShape<16, 16, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise128x4;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise128x4;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TestbedComplex<MmaTensorOp, cutlass::gemm::GemmShape<16, 16, 4> >().run();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
// complex<float> * complex<float> => complex<float>
// Input data type: complex<float>
// Math instruction: mma.sync.aligned.m16n8k8.f32.tf32.tf32.f32
// Output data type: complex<float>
// Shared memory layout: Congrous
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_warp_gemm_complex_tensor_op_f32, 16x16x8_16x8x8_nt) {
using Shape = cutlass::gemm::GemmShape<16, 16, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<16, 16, 8> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 16x16x16_16x8x8_nt) {
using Shape = cutlass::gemm::GemmShape<16, 16, 16>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<16, 16, 16> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 16x32x8_16x8x8_nt) {
using Shape = cutlass::gemm::GemmShape<16, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<16, 32, 8> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 32x16x8_16x16x8_nt) {
using Shape = cutlass::gemm::GemmShape<32, 16, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 16, 8> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 32x32x8_16x8x8_nt) {
using Shape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 8> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 32x32x8_16x8x8_nh) {
using Shape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kConjugate
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 8> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 32x32x8_16x8x8_ct) {
using Shape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
cutlass::ComplexTransform::kConjugate,
cutlass::ComplexTransform::kNone
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 8> >()
.run();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// complex<float> * complex<float> => complex<float>
// Input data type: complex<float>
// Math instruction: mma.sync.aligned.m16n8k8.f32.tf32.tf32.f32
// Output data type: complex<float>
// Shared memory layout: Crosswise
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_warp_gemm_complex_tensor_op_f32, 16x16x8_16x8x8_tn) {
using Shape = cutlass::gemm::GemmShape<16, 16, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<16, 16, 8> >()
.run();
}
// TEST FAILS crosswise complex<float> TN mma.sync.aligned.m16n8k8.f32.tf32.tf32.f32 test fails for k = 2*8 = 16
TEST(SM80_warp_gemm_complex_tensor_op_f32, 16x16x16_16x8x8_tn) {
using Shape = cutlass::gemm::GemmShape<16, 16, 16>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<16, 16, 16> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 32x32x8_16x8x8_tn) {
using Shape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 8> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 32x64x8_16x8x8_tn) {
using Shape = cutlass::gemm::GemmShape<32, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 64, 8> >()
.run();
}
TEST(SM80_warp_gemm_complex_tensor_op_f32, 64x32x8_16x8x8_tn) {
using Shape = cutlass::gemm::GemmShape<64, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::complex<float>;
using ElementC = cutlass::complex<float>;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<64, 32, 8> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_warp_gemm_complex_tensor_op_f64, 32x32x8_8x8x4_tn) {
using Shape = cutlass::gemm::GemmShape<32, 32, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 8> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_warp_gemm_complex_tensor_op_f64, 32x32x8_8x8x4_nt) {
using Shape = cutlass::gemm::GemmShape<32, 32, 4>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = cutlass::complex<double>;
using ElementC = cutlass::complex<double>;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaComplexTensorOp<
Shape,
InstructionShape,
Element,
LayoutA,
Element,
LayoutB,
ElementC,
cutlass::layout::RowMajor
>::Type;
test::gemm::warp::TransformedTestbedComplex<
MmaTensorOp, cutlass::gemm::GemmShape<32, 32, 8> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////////////////////
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)