cutlass/test/unit/gemm/threadblock/mma_pipelined_slicedk.cu

187 lines
8.2 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for CTA-level GEMM specifically for sliced-k kernels (SM_61 and SM_75)
*/
#include "mma_pipelined_testbed_slicedk.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
// igemm_NT DP4A
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM61_igemm_sliced_k, igemm_int8_nt_32x32x128_32x32x4) {
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
cutlass::gemm::GemmShape<32, 32, 128>, // ThreadblockShape,
cutlass::gemm::GemmShape<32, 32, 32>, // WarpShape,
cutlass::gemm::GemmShape<1, 1, 4>, // InstructionShape,
int8_t, // ElementA,
cutlass::layout::ColumnMajor, // LayoutA,
int8_t, // ElementB,
cutlass::layout::RowMajor, // LayoutB,
int, // ElementC,
cutlass::layout::RowMajor, // LayoutC,
cutlass::arch::OpClassSimt, // OpClass
2>; // Stages,
cutlass::gemm::GemmCoord problem_size(32, 32, 128);
float alpha = 1.f;
float beta = 0.0f;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(
problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta)
.run(grid, block, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform);
}
TEST(SM61_igemm_sliced_k_big, igemm_int8_nt_32x32x128_32x32x4_bigk) {
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
cutlass::gemm::GemmShape<32, 32, 128>, // ThreadblockShape,
cutlass::gemm::GemmShape<32, 32, 32>, // WarpShape,
cutlass::gemm::GemmShape<1, 1, 4>, // InstructionShape,
int8_t, // ElementA,
cutlass::layout::ColumnMajor, // LayoutA,
int8_t, // ElementB,
cutlass::layout::RowMajor, // LayoutB,
int, // ElementC,
cutlass::layout::RowMajor, // LayoutC,
cutlass::arch::OpClassSimt, // OpClass
2>; // Stages,
cutlass::gemm::GemmCoord problem_size(32, 32, 1024);
float alpha = 1.f;
float beta = 0.0f;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(
problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta)
.run(grid, block, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform);
}
TEST(SM61_igemm_sliced_k, igemm_int8_nt_32x64x128_32x32x4) {
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
cutlass::gemm::GemmShape<32, 64, 128>, // ThreadblockShape,
cutlass::gemm::GemmShape<32, 32, 64>, // WarpShape,
cutlass::gemm::GemmShape<1, 1, 4>, // InstructionShape,
int8_t, // ElementA,
cutlass::layout::ColumnMajor, // LayoutA,
int8_t, // ElementB,
cutlass::layout::RowMajor, // LayoutB,
int, // ElementC,
cutlass::layout::RowMajor, // LayoutC,
cutlass::arch::OpClassSimt, // OpClass
2>; // Stages,
cutlass::gemm::GemmCoord problem_size(32, 64, 256);
float alpha = 1.f;
float beta = 0.0f;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(
problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta)
.run(grid, block, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform);
}
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
// Tensor Op GEMM for SM_75
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_gemm_threadblock_congruous_sliced, tensor_op_64x64x256_tb64x64x64_warp64x32x32_16x8x8) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 64, 256);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
cutlass::arch::OpMultiplyAdd>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
TEST(SM75_gemm_threadblock_crosswise_sliced, tensor_op_64x64x256_tb64x64x64_warp64x32x32_16x8x8) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 64, 256);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
cutlass::arch::OpMultiplyAdd>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
////////////////////////////////////////////////////////////////////////////////
#endif