571 lines
20 KiB
C++
571 lines
20 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
/*! \file
|
|
\brief Testbed for running device-level GEMMs with absolute maximum calculation and scaling
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
|
|
#include "cutlass/util/host_tensor.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
#include "cutlass/util/distribution.h"
|
|
#include "cutlass/util/reference/host/gemm_complex.h"
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
#include "cutlass/util/reference/host/tensor_copy.h"
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
#include "cutlass/util/reference/host/tensor_norm.h"
|
|
#include "cutlass/util/reference/host/gemm.h"
|
|
|
|
#include "testbed.h"
|
|
#include "testbed_sparse.h"
|
|
#include "testbed_utils.h"
|
|
|
|
#include "cutlass/layout/matrix.h"
|
|
#include "cutlass/matrix_coord.h"
|
|
|
|
namespace test {
|
|
namespace gemm {
|
|
namespace device {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <
|
|
typename Gemm,
|
|
typename GemmTestbed,
|
|
template<typename T> class ActivationFunctor
|
|
>
|
|
struct TestbedWithAmax {
|
|
|
|
static_assert(std::is_same_v<GemmTestbed, Testbed<Gemm>> || std::is_same_v<GemmTestbed, SparseTestbed<Gemm>>);
|
|
static constexpr bool IsSparseTestbed = std::is_same_v<GemmTestbed, SparseTestbed<Gemm>>;
|
|
|
|
using ElementAccumulator = typename Gemm::ElementAccumulator;
|
|
using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute;
|
|
using ElementScalingFactor = typename Gemm::EpilogueOutputOp::ElementScalingFactor;
|
|
using ElementAbsmax = typename Gemm::EpilogueOutputOp::ElementAbsmax;
|
|
|
|
static bool const kScaleAux = Gemm::EpilogueOutputOp::kIsScalingAndAmaxAuxOutputNeeded;
|
|
static bool const kScaleOutput = Gemm::EpilogueOutputOp::kIsScalingAndAmaxOutputNeeded;
|
|
bool doScaleA;
|
|
bool doScaleB;
|
|
bool doScaleC;
|
|
|
|
GemmTestbed underlying_testbed;
|
|
|
|
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementAuxOutput, typename Gemm::LayoutC> tensor_Aux;
|
|
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_Vector;
|
|
cutlass::HostTensor<ElementAccumulator, typename Gemm::LayoutC> tmp_D;
|
|
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementOutput, typename Gemm::LayoutC> reference_D;
|
|
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementAuxOutput, typename Gemm::LayoutC> reference_Aux;
|
|
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_A;
|
|
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_B;
|
|
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_C;
|
|
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_D;
|
|
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_Aux;
|
|
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> abs_max_Aux;
|
|
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> abs_max_D;
|
|
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> reference_abs_max_Aux;
|
|
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> reference_abs_max_D;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
TestbedWithAmax(
|
|
bool scaleA = true,
|
|
bool scaleB = true,
|
|
bool scaleC = true,
|
|
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform
|
|
):
|
|
doScaleA(scaleA), doScaleB(scaleB), doScaleC(scaleC),
|
|
underlying_testbed(init_A_, init_B_, init_C_) { }
|
|
|
|
/// Helper to initialize scaling factors
|
|
template <typename Element, typename Layout>
|
|
bool initialize_scale_factor(cutlass::TensorView<Element, Layout> view, uint64_t seed, int bits=0) {
|
|
cutlass::reference::host::TensorFillRandomUniform(view, seed, double(1.), double(0.), bits);
|
|
return true;
|
|
}
|
|
|
|
/// Initializes data structures
|
|
void initialize(cutlass::gemm::GemmCoord problem_size) {
|
|
//
|
|
// Allocate the GEMM workspace
|
|
//
|
|
underlying_testbed.initialize(problem_size);
|
|
|
|
tensor_Vector.resize({1, problem_size.n()});
|
|
reference_D.resize(problem_size.mn(), false);
|
|
tmp_D.resize(problem_size.mn(), false);
|
|
|
|
EXPECT_TRUE(
|
|
underlying_testbed.initialize_tensor(tensor_Vector.host_view(), underlying_testbed.init_C, underlying_testbed.seed + 2020)
|
|
);
|
|
|
|
// It is possible to randomly initialize to all zeros, so override this with non-zeros
|
|
// in the upper left corner of each operand.
|
|
cutlass::Coord<2> origin(0);
|
|
tensor_Vector.host_view().at(origin) = typename Gemm::ElementC(1);
|
|
|
|
cutlass::reference::host::TensorCopy(reference_D.host_view(), underlying_testbed.tensor_C.host_view());
|
|
|
|
tensor_Vector.sync_device();
|
|
|
|
int scale_bits = 2;
|
|
if (doScaleA) {
|
|
scale_A.resize({1, 1});
|
|
EXPECT_TRUE(initialize_scale_factor(scale_A.host_view(), underlying_testbed.seed + 2021, scale_bits));
|
|
scale_A.sync_device();
|
|
}
|
|
|
|
if (doScaleB) {
|
|
scale_B.resize({1, 1});
|
|
EXPECT_TRUE(initialize_scale_factor(scale_B.host_view(), underlying_testbed.seed + 2022, scale_bits));
|
|
scale_B.sync_device();
|
|
}
|
|
|
|
if (doScaleC) {
|
|
scale_C.resize({1, 1});
|
|
EXPECT_TRUE(initialize_scale_factor(scale_C.host_view(), underlying_testbed.seed + 2023, scale_bits));
|
|
scale_C.sync_device();
|
|
}
|
|
|
|
if (kScaleOutput) {
|
|
scale_D.resize({1, 1});
|
|
EXPECT_TRUE(initialize_scale_factor(scale_D.host_view(), underlying_testbed.seed + 2024, scale_bits));
|
|
scale_D.sync_device();
|
|
|
|
abs_max_D.resize({1, 1});
|
|
cutlass::reference::host::TensorFill(abs_max_D.host_view());
|
|
abs_max_D.sync_device();
|
|
|
|
reference_abs_max_D.resize({1, 1});
|
|
}
|
|
|
|
if (kScaleAux) {
|
|
tensor_Aux.resize(problem_size.mn());
|
|
cutlass::reference::host::TensorFill(tensor_Aux.host_view());
|
|
tensor_Aux.sync_device();
|
|
|
|
scale_Aux.resize({1, 1});
|
|
EXPECT_TRUE(initialize_scale_factor(scale_Aux.host_view(), underlying_testbed.seed + 2025, scale_bits));
|
|
scale_Aux.sync_device();
|
|
|
|
abs_max_Aux.resize({1, 1});
|
|
cutlass::reference::host::TensorFill(abs_max_Aux.host_view());
|
|
abs_max_Aux.sync_device();
|
|
|
|
reference_Aux.resize(problem_size.mn(), false);
|
|
reference_abs_max_Aux.resize({1, 1});
|
|
}
|
|
}
|
|
|
|
/// Compares computed reference with device reference and outputs to a file if incorrect
|
|
bool compare_reference(
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
ElementCompute alpha,
|
|
ElementCompute beta) {
|
|
|
|
underlying_testbed.tensor_D.sync_host();
|
|
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(underlying_testbed.tensor_A.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(underlying_testbed.tensor_B.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(underlying_testbed.tensor_C.host_view()), 0);
|
|
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(underlying_testbed.tensor_D.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0);
|
|
bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), underlying_testbed.tensor_D.host_view());
|
|
|
|
if (kScaleAux) {
|
|
tensor_Aux.sync_host();
|
|
abs_max_Aux.sync_host();
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_Aux.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(abs_max_Aux.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_Aux.host_view()), 0);
|
|
passed &= cutlass::reference::host::TensorEquals(reference_Aux.host_view(), tensor_Aux.host_view());
|
|
passed &= cutlass::reference::host::TensorEquals(abs_max_Aux.host_view(), reference_abs_max_Aux.host_view());
|
|
}
|
|
|
|
if (kScaleOutput) {
|
|
abs_max_D.sync_host();
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(abs_max_D.host_view()), 0);
|
|
passed &= cutlass::reference::host::TensorEquals(abs_max_D.host_view(), reference_abs_max_D.host_view());
|
|
}
|
|
|
|
EXPECT_TRUE(passed) << " mismatched reference";
|
|
|
|
if (!passed) {
|
|
|
|
std::ofstream file("testbed_with_amax_errors.txt");
|
|
|
|
file
|
|
<< "problem: " << problem_size
|
|
<< ", alpha: " << alpha << ", beta: " << beta << "\n\n";
|
|
|
|
file
|
|
<< "A =\n" << underlying_testbed.tensor_A.host_view()
|
|
<< "\nB =\n" << underlying_testbed.tensor_B.host_view()
|
|
<< "\nC =\n" << underlying_testbed.tensor_C.host_view()
|
|
<< "\nVector =\n" << tensor_Vector.host_view()
|
|
<< "\nScaleA = " << scale_A.host_view()
|
|
<< "\nScaleB = " << scale_B.host_view()
|
|
<< "\nScaleC = " << scale_C.host_view()
|
|
<< "\nScaleD = " << scale_D.host_view()
|
|
<< "\nScaleAux = " << scale_Aux.host_view()
|
|
<< "\n\nReference D =\n" << reference_D.host_view()
|
|
<< "\nComputed D =\n" << underlying_testbed.tensor_D.host_view();
|
|
if (kScaleAux) {
|
|
file
|
|
<< "\n\nReference Aux =\n" << reference_Aux.host_view()
|
|
<< "\nComputed Aux =\n" << tensor_Aux.host_view()
|
|
<< "\n\nReference Absmax Aux = " << reference_abs_max_Aux.host_view()
|
|
<< "\nComputed Absmax Aux = " << abs_max_Aux.host_view();
|
|
}
|
|
if (kScaleOutput) {
|
|
file
|
|
<< "\n\nReference Absmax D = " << reference_abs_max_D.host_view()
|
|
<< "\nComputed Absmax D = " << abs_max_D.host_view();
|
|
}
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
/// Verifies the result is a GEMM
|
|
bool verify(
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
ElementCompute alpha,
|
|
ElementCompute beta) {
|
|
|
|
cutlass::Coord<2> origin(0);
|
|
ElementCompute scaled_alpha = alpha;
|
|
if (doScaleA) {
|
|
scaled_alpha *= scale_A.host_view().at(origin);
|
|
}
|
|
if (doScaleB) {
|
|
scaled_alpha *= scale_B.host_view().at(origin);
|
|
}
|
|
|
|
ElementCompute scaled_beta = beta;
|
|
if (doScaleC) {
|
|
scaled_beta *= scale_C.host_view().at(origin);
|
|
}
|
|
|
|
//
|
|
// Verify
|
|
//
|
|
|
|
auto ref_tA = [&](){
|
|
if constexpr (IsSparseTestbed) {
|
|
cutlass::uncompress(
|
|
underlying_testbed.tensor_A_uncompressed.host_ref(),
|
|
underlying_testbed.tensor_A.host_ref(),
|
|
underlying_testbed.tensor_E.host_ref(),
|
|
problem_size.m(),
|
|
problem_size.k()
|
|
);
|
|
return underlying_testbed.tensor_A_uncompressed.host_ref();
|
|
}
|
|
else {
|
|
return underlying_testbed.tensor_A.host_ref();
|
|
}
|
|
}();
|
|
|
|
// Run reference kernel with ElementOutput of type ElementAccumulator
|
|
// so that we can compute the absmax epilogue on data that is of type
|
|
// ElementAccumulator (which is what the GEMM we are testing will do).
|
|
cutlass::reference::host::GemmComplex<
|
|
typename Gemm::ElementA, typename Gemm::LayoutA,
|
|
typename Gemm::ElementB, typename Gemm::LayoutB,
|
|
typename Gemm::ElementC, typename Gemm::LayoutC,
|
|
ElementCompute, ElementAccumulator, ElementAccumulator
|
|
>(
|
|
problem_size,
|
|
scaled_alpha,
|
|
ref_tA,
|
|
Gemm::kTransformA,
|
|
underlying_testbed.tensor_B.host_ref(),
|
|
Gemm::kTransformB,
|
|
scaled_beta,
|
|
underlying_testbed.tensor_C.host_ref(),
|
|
tmp_D.host_ref(),
|
|
ElementAccumulator(0)
|
|
);
|
|
|
|
ElementCompute tmp_abs_max_Aux(0.);
|
|
ElementCompute tmp_abs_max_D(0.);
|
|
|
|
cutlass::NumericConverter<ElementCompute, typename Gemm::ElementC> cvt_c_to_compute;
|
|
cutlass::NumericConverter<ElementCompute, ElementAccumulator> cvt_accum_to_compute;
|
|
cutlass::NumericConverter<ElementAbsmax, ElementCompute> cvt_compute_to_absmax;
|
|
cutlass::NumericConverter<typename Gemm::EpilogueOutputOp::ElementOutput, ElementCompute> cvt_compute_to_d;
|
|
cutlass::NumericConverter<typename Gemm::EpilogueOutputOp::ElementAuxOutput, ElementCompute> cvt_compute_to_aux;
|
|
|
|
cutlass::absolute_value_op<ElementCompute> abs;
|
|
cutlass::maximum_with_nan_propogation<ElementCompute> max;
|
|
ActivationFunctor<ElementCompute> act;
|
|
|
|
ElementScalingFactor d_scale = kScaleOutput ? scale_D.host_view().at(origin) : ElementScalingFactor(1.);
|
|
|
|
for (int m = 0; m < problem_size.m(); ++m) {
|
|
for (int n = 0; n < problem_size.n(); ++n) {
|
|
ElementCompute intermediate = cvt_accum_to_compute(tmp_D.host_view().at({m, n}));
|
|
ElementCompute bias = cvt_c_to_compute(tensor_Vector.host_view().at({0, n}));
|
|
ElementCompute aux = intermediate + bias;
|
|
ElementCompute d = act(aux);
|
|
tmp_abs_max_Aux = max(abs(aux), tmp_abs_max_Aux);
|
|
tmp_abs_max_D = max(abs(d), tmp_abs_max_D);
|
|
reference_D.host_view().at({m, n}) = cvt_compute_to_d(d * d_scale);
|
|
|
|
if (kScaleAux) {
|
|
reference_Aux.host_view().at({m, n}) = cvt_compute_to_aux(aux * scale_Aux.host_view().at(origin));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (kScaleAux) {
|
|
reference_abs_max_Aux.host_view().at(origin) = cvt_compute_to_absmax(tmp_abs_max_Aux);
|
|
}
|
|
|
|
if (kScaleOutput) {
|
|
reference_abs_max_D.host_view().at(origin) = cvt_compute_to_absmax(tmp_abs_max_D);
|
|
}
|
|
|
|
return compare_reference(problem_size, alpha, beta);
|
|
}
|
|
|
|
/// Returns true if the CUDA device is sufficient to execute the kernel.
|
|
bool sufficient() const {
|
|
//
|
|
// Determine SMEM requirements and waive if not satisfied
|
|
//
|
|
return underlying_testbed.sufficient();
|
|
}
|
|
|
|
/// Executes one test
|
|
bool run(
|
|
cutlass::gemm::GemmUniversalMode mode,
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
int batch_count = 1,
|
|
ElementCompute alpha = ElementCompute(1),
|
|
ElementCompute beta = ElementCompute(0))
|
|
{
|
|
|
|
// Waive test if insufficient CUDA device
|
|
if (!sufficient()) {
|
|
if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
|
|
std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
this->initialize(problem_size);
|
|
|
|
//
|
|
// Initialize the GEMM operator
|
|
//
|
|
|
|
typename Gemm::EpilogueOutputOp::Params::ActivationParams activation_params{alpha, beta};
|
|
typename Gemm::EpilogueOutputOp::Params epilogue_params{
|
|
activation_params,
|
|
scale_A.device_data(),
|
|
scale_B.device_data(),
|
|
scale_C.device_data(),
|
|
scale_D.device_data(),
|
|
scale_Aux.device_data(),
|
|
abs_max_Aux.device_data(),
|
|
abs_max_D.device_data()
|
|
};
|
|
|
|
auto arguments = [&]() {
|
|
if constexpr (IsSparseTestbed) {
|
|
return typename Gemm::Arguments{
|
|
problem_size,
|
|
underlying_testbed.tensor_A.device_ref(),
|
|
underlying_testbed.tensor_B.device_ref(),
|
|
underlying_testbed.tensor_C.device_ref(),
|
|
underlying_testbed.tensor_D.device_ref(),
|
|
underlying_testbed.tensor_E_reordered.device_ref(),
|
|
tensor_Aux.device_ref(),
|
|
tensor_Vector.device_data(),
|
|
0, // stride vector
|
|
epilogue_params
|
|
};
|
|
}
|
|
else {
|
|
return typename Gemm::Arguments{
|
|
mode,
|
|
problem_size,
|
|
batch_count,
|
|
epilogue_params,
|
|
underlying_testbed.tensor_A.device_data(),
|
|
underlying_testbed.tensor_B.device_data(),
|
|
underlying_testbed.tensor_C.device_data(),
|
|
underlying_testbed.tensor_D.device_data(),
|
|
tensor_Aux.device_data(),
|
|
tensor_Vector.device_data(),
|
|
problem_size.m() * problem_size.k(),
|
|
problem_size.n() * problem_size.k(),
|
|
problem_size.m() * problem_size.n(),
|
|
problem_size.m() * problem_size.n(),
|
|
0, // stride vector
|
|
underlying_testbed.tensor_A.layout().stride(0),
|
|
underlying_testbed.tensor_B.layout().stride(0),
|
|
underlying_testbed.tensor_C.layout().stride(0),
|
|
underlying_testbed.tensor_D.layout().stride(0),
|
|
(int64_t)0 // Leading dimension of vector. This must be 0
|
|
};
|
|
}
|
|
}();
|
|
|
|
Gemm gemm_op;
|
|
|
|
cutlass::Status status = gemm_op.can_implement(arguments);
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
|
|
|
|
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
|
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
|
|
|
status = gemm_op.initialize(arguments, workspace.get());
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
|
|
|
|
//
|
|
// Run the GEMM
|
|
//
|
|
|
|
status = gemm_op();
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
|
|
|
|
cudaError_t cuda_error = cudaDeviceSynchronize();
|
|
EXPECT_TRUE(cuda_error == cudaSuccess) << cudaGetErrorString(cuda_error);
|
|
|
|
//
|
|
// Verify
|
|
//
|
|
|
|
bool passed = this->verify(problem_size, alpha, beta);
|
|
|
|
if (!passed) {
|
|
std::cout << "Failed with batch_count/split_k_slices = " << batch_count << std::endl;
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <
|
|
typename Gemm,
|
|
typename GemmTestbed,
|
|
template<typename T> class ActivationFunctor = cutlass::epilogue::thread::Identity
|
|
>
|
|
bool TestAllGemmWithAbsmax(bool scaleA=true, bool scaleB=true, bool scaleC=true) {
|
|
|
|
int const kMinimumOperandElementSize =
|
|
std::min(
|
|
int(cutlass::sizeof_bits<typename Gemm::ElementA>::value),
|
|
int(cutlass::sizeof_bits<typename Gemm::ElementB>::value));
|
|
|
|
int constexpr kAlignmentM = [&]() {
|
|
if constexpr (std::is_same_v<GemmTestbed, SparseTestbed<Gemm>>) {
|
|
// M dimension has to be multiple of 32 (sparse float) or 16 (sparse int)
|
|
// because of the reordering of operand E
|
|
return std::max(((sizeof(typename Gemm::ElementE) == 2) ? 32 : 16),
|
|
kMinimumOperandElementSize);
|
|
}
|
|
else {
|
|
return 128 / kMinimumOperandElementSize;
|
|
}
|
|
}();
|
|
|
|
int const kAlignmentN = 128 / kMinimumOperandElementSize;
|
|
|
|
int M_problems[] = {kAlignmentM, 128 + 32};
|
|
int N_problems[] = {kAlignmentN, 512 - 2 * kAlignmentN};
|
|
int K_problems[] = {Gemm::ThreadblockShape::kK, Gemm::ThreadblockShape::kK * (Gemm::kStages + 1)};
|
|
double alpha_problems[] = {1.};
|
|
double beta_problems[] = {0.};
|
|
|
|
bool passed = true;
|
|
|
|
for (int M : M_problems) {
|
|
for (int N : N_problems) {
|
|
for (int K : K_problems) {
|
|
for (double alpha : alpha_problems) {
|
|
for (double beta : beta_problems) {
|
|
TestbedWithAmax<Gemm, GemmTestbed, ActivationFunctor> testbed(scaleA, scaleB, scaleC);
|
|
|
|
using ElementAccumulator = typename Gemm::ElementAccumulator;
|
|
|
|
passed = testbed.run(
|
|
cutlass::gemm::GemmUniversalMode::kGemm,
|
|
{M, N, K},
|
|
1,
|
|
cutlass::from_real<ElementAccumulator>(alpha),
|
|
cutlass::from_real<ElementAccumulator>(beta)
|
|
);
|
|
|
|
EXPECT_TRUE(passed)
|
|
<< "M: " << M << ", N: " << N << ", K: " << K << ", alpha: " << alpha << ", beta: " << beta;
|
|
|
|
if (!passed) {
|
|
|
|
return passed;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace device
|
|
} // namespace gemm
|
|
} // namespace test
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|