cutlass/test/unit/gemm/device/testbed_planar_complex.h

327 lines
9.3 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#pragma once
#include <iostream>
#include <fstream>
#include <sstream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/reference/host/gemm_planar_complex.h"
#include "cutlass/util/host_tensor_planar_complex.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace gemm {
namespace device {
////////////////////////////////////////////////////////////////////////////////
template <typename Gemm>
class TestbedPlanarComplex {
public:
using ElementA = typename Gemm::ElementA;
using LayoutA = typename Gemm::LayoutA;
using ElementB = typename Gemm::ElementB;
using LayoutB = typename Gemm::LayoutB;
using ElementC = typename Gemm::ElementC;
using LayoutC = typename Gemm::LayoutC;
using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
using ElementAccumulator = typename Gemm::ElementAccumulator;
//
// Data members
//
cutlass::gemm::GemmCoord problem_size;
cutlass::HostTensorPlanarComplex<ElementA, LayoutA> tensor_A;
cutlass::HostTensorPlanarComplex<ElementB, LayoutB> tensor_B;
cutlass::HostTensorPlanarComplex<ElementC, LayoutC> tensor_C;
cutlass::HostTensorPlanarComplex<ElementC, LayoutC> tensor_D;
cutlass::HostTensorPlanarComplex<ElementC, LayoutC> tensor_D_ref;
//
// Methods
//
TestbedPlanarComplex(cutlass::gemm::GemmCoord const & problem_size): problem_size(problem_size) {
tensor_A.reset({problem_size.m(), problem_size.k()});
tensor_B.reset({problem_size.k(), problem_size.n()});
tensor_C.reset({problem_size.m(), problem_size.n()});
tensor_D.reset({problem_size.m(), problem_size.n()});
tensor_D_ref.reset({problem_size.m(), problem_size.n()}, false);
}
void initialize() {
uint64_t seed = 1073;
int scope_max = 8;
int scope_min = -8;
cutlass::reference::host::TensorFillRandomUniform(
tensor_A.host_view(), seed, scope_max, scope_min, 0);
cutlass::reference::host::TensorFillRandomUniform(
tensor_B.host_view(), seed * 2019, scope_max, scope_min, 0);
cutlass::reference::host::TensorFillRandomUniform(
tensor_C.host_view(), seed * 2020, scope_max, scope_min, 0);
cutlass::reference::host::TensorFill(tensor_D.host_view(), cutlass::complex<ElementC>());
cutlass::reference::host::TensorFill(tensor_D_ref.host_view(), cutlass::complex<ElementC>());
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D.sync_device();
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
//
// Determine SMEM requirements and waive if not satisfied
//
size_t smem_size = sizeof(typename Gemm::GemmKernel::SharedStorage);
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.sharedMemPerBlockOptin < smem_size) {
return false;
}
return true;
}
bool run(
cutlass::complex<ElementCompute> alpha = {1, 0},
cutlass::complex<ElementCompute> beta = {0, 0}) {
// Waive test if insufficient CUDA device
if (!sufficient()) {
if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
}
return true;
}
initialize();
int batch_count = 1;
ElementA *ptr_A = tensor_A.device_data();
ElementB *ptr_B = tensor_B.device_data();
ElementC *ptr_C = tensor_C.device_data();
ElementC *ptr_D = tensor_D.device_data();
typename LayoutA::Stride::Index lda = tensor_A.layout().stride(0);
typename LayoutB::Stride::Index ldb = tensor_B.layout().stride(0);
typename LayoutC::Stride::Index ldc = tensor_C.layout().stride(0);
typename LayoutC::Stride::Index ldd = tensor_D.layout().stride(0);
int64_t imag_stride_A = tensor_A.imaginary_stride();
int64_t imag_stride_B = tensor_B.imaginary_stride();
int64_t imag_stride_C = tensor_C.imaginary_stride();
int64_t imag_stride_D = tensor_D.imaginary_stride();
//
// Launch device kernel
//
Gemm gemm_op;
typename Gemm::Arguments args{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_size,
batch_count,
{alpha, beta},
ptr_A,
ptr_A + imag_stride_A,
ptr_B,
ptr_B + imag_stride_B,
ptr_C,
ptr_C + imag_stride_C,
ptr_D,
ptr_D + imag_stride_D,
lda,
lda,
ldb,
ldb,
ldc,
ldc,
ldd,
ldd
};
cutlass::Status status = gemm_op(args);
EXPECT_EQ(status, cutlass::Status::kSuccess);
cudaError_t error = cudaDeviceSynchronize();
tensor_D.sync_host();
//
// Compute reference
//
cutlass::reference::host::GemmPlanarComplex<
ElementA, LayoutA,
ElementB, LayoutB,
ElementC, LayoutC,
ElementAccumulator
>(
problem_size,
alpha,
tensor_A.host_ref(),
Gemm::kTransformA,
tensor_B.host_ref(),
Gemm::kTransformB,
beta,
tensor_C.host_ref(),
tensor_D_ref.host_ref()
);
bool passed = cutlass::reference::host::TensorEquals(
tensor_D.host_view(),
tensor_D_ref.host_view()
);
EXPECT_TRUE(passed);
if (!passed) {
std::ofstream output("gemm_planar_complex.txt");
output
<< "A:\n" << tensor_A.host_view() << "\n"
<< "B:\n" << tensor_B.host_view() << "\n"
<< "C:\n" << tensor_C.host_view() << "\n"
<< "Reference:\n"
<< tensor_D_ref.host_view() << "\n"
<< "Computed:\n"
<< tensor_D.host_view() << "\n";
}
return passed;
}
};
template <typename Gemm>
bool TestOneGemmPlanarComplex(cutlass::gemm::GemmCoord problem_size) {
TestbedPlanarComplex<Gemm> testbed(problem_size);
return testbed.run();
}
template <typename Gemm>
bool TestAllGemmPlanarComplex() {
int M[] = {
16, 64, 72, 144, 264, 520,
};
int N[] = {
16, 64, 72, 144, 248, 264, 520
};
int K[] = {
8, 64, 72, 96, 264, 520
};
using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
cutlass::complex<ElementCompute> alpha_values[] = {
{ElementCompute(1.25), ElementCompute(-0.5)}
};
cutlass::complex<ElementCompute> beta_values[] = {
{ElementCompute(-2.25), ElementCompute(1.5)}
};
for (int m : M) {
for (int n : N) {
for (int k : K) {
test::gemm::device::TestbedPlanarComplex<Gemm> testbed({m, n, k});
for (auto const &alpha : alpha_values) {
for (auto const &beta : beta_values) {
bool passed = testbed.run(alpha, beta);
if (!passed) {
return false;
}
}
}
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
} // namespace device
} // namespace gemm
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////