600 lines
20 KiB
C++
600 lines
20 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Tests for device-wide GEMM interface
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
|
|
#include "cutlass/util/host_tensor.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
#include "cutlass/util/distribution.h"
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
#include "cutlass/util/reference/host/tensor_copy.h"
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
#include "cutlass/util/reference/host/tensor_norm.h"
|
|
#include "cutlass/util/reference/host/gemm.h"
|
|
|
|
#include "testbed_utils.h"
|
|
#include "testbed_universal.h"
|
|
|
|
#include "cutlass/layout/matrix.h"
|
|
#include "cutlass/matrix_coord.h"
|
|
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
|
|
|
namespace test {
|
|
namespace gemm {
|
|
namespace device {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Gemm, bool Relu = false>
|
|
struct Testbed {
|
|
|
|
using ElementA = typename Gemm::ElementA;
|
|
using ElementB = typename Gemm::ElementB;
|
|
using ElementC = typename Gemm::ElementC;
|
|
using ElementAccumulator = typename Gemm::ElementAccumulator;
|
|
using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute;
|
|
|
|
/// Initialization
|
|
typename Gemm::LayoutA::Stride stride_factor_A;
|
|
typename Gemm::LayoutB::Stride stride_factor_B;
|
|
typename Gemm::LayoutC::Stride stride_factor_C;
|
|
cutlass::Distribution::Kind init_A;
|
|
cutlass::Distribution::Kind init_B;
|
|
cutlass::Distribution::Kind init_C;
|
|
uint64_t seed;
|
|
|
|
cutlass::HostTensor<typename Gemm::ElementA, typename Gemm::LayoutA> tensor_A;
|
|
cutlass::HostTensor<typename Gemm::ElementB, typename Gemm::LayoutB> tensor_B;
|
|
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_C;
|
|
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_D;
|
|
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> reference_D;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
Testbed(
|
|
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
|
uint64_t seed_ = 2080
|
|
):
|
|
stride_factor_A(typename Gemm::LayoutA::Stride()),
|
|
stride_factor_B(typename Gemm::LayoutB::Stride()),
|
|
stride_factor_C(typename Gemm::LayoutC::Stride()),
|
|
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
|
|
|
|
Testbed(
|
|
typename Gemm::LayoutA::Stride stride_factor_A_,
|
|
typename Gemm::LayoutB::Stride stride_factor_B_,
|
|
typename Gemm::LayoutC::Stride stride_factor_C_,
|
|
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
|
uint64_t seed_ = 2080
|
|
):
|
|
stride_factor_A(stride_factor_A_),
|
|
stride_factor_B(stride_factor_B_),
|
|
stride_factor_C(stride_factor_C_),
|
|
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
|
|
|
|
/// Helper to initialize a tensor view
|
|
template <typename Element, typename Layout>
|
|
bool initialize_tensor(
|
|
cutlass::TensorView<Element, Layout> view,
|
|
cutlass::Distribution::Kind dist_kind,
|
|
uint64_t seed) {
|
|
|
|
if (dist_kind == cutlass::Distribution::Uniform) {
|
|
|
|
double scope_max, scope_min;
|
|
int bits_input = cutlass::sizeof_bits<Element>::value;
|
|
int bits_output = cutlass::sizeof_bits<typename Gemm::ElementC>::value;
|
|
|
|
if (bits_input == 1) {
|
|
scope_max = 2;
|
|
scope_min = 0;
|
|
} else if (bits_input <= 8) {
|
|
scope_max = 1;
|
|
scope_min = -1;
|
|
} else if (bits_output == 16) {
|
|
scope_max = 5;
|
|
scope_min = -5;
|
|
} else {
|
|
scope_max = 8;
|
|
scope_min = -8;
|
|
}
|
|
|
|
cutlass::reference::host::TensorFillRandomUniform(
|
|
view, seed, scope_max, scope_min, 0);
|
|
}
|
|
else if (dist_kind == cutlass::Distribution::Identity) {
|
|
|
|
cutlass::reference::host::TensorFillIdentity(view);
|
|
}
|
|
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
|
|
|
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
|
}
|
|
else if (dist_kind == cutlass::Distribution::Sequential) {
|
|
|
|
cutlass::reference::host::BlockFillSequential(
|
|
view.data(), view.capacity());
|
|
}
|
|
else {
|
|
EXPECT_TRUE(false) << "Not implemented";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Initializes data structures
|
|
void initialize(cutlass::gemm::GemmCoord problem_size) {
|
|
//
|
|
// Allocate the GEMM workspace
|
|
//
|
|
|
|
tensor_A.resize(problem_size.mk(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutA>::layout_factory(problem_size.mk(), stride_factor_A));
|
|
tensor_B.resize(problem_size.kn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutB>::layout_factory(problem_size.kn(), stride_factor_B));
|
|
tensor_C.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C));
|
|
tensor_D.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C));
|
|
reference_D.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C), false);
|
|
|
|
EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019));
|
|
EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018));
|
|
EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017));
|
|
|
|
// It is possible to randomly initialize to all zeros, so override this with non-zeros
|
|
// in the upper left corner of each operand.
|
|
tensor_A.host_view().at({0, 0}) = typename Gemm::ElementA(1);
|
|
tensor_B.host_view().at({0, 0}) = typename Gemm::ElementB(1);
|
|
tensor_C.host_view().at(cutlass::make_Coord(0, 0)) = typename Gemm::ElementC(1);
|
|
|
|
cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view());
|
|
|
|
tensor_A.sync_device();
|
|
tensor_B.sync_device();
|
|
tensor_C.sync_device();
|
|
tensor_D.sync_device();
|
|
}
|
|
|
|
/// Compares computed reference with device reference and outputs to a file if incorrect
|
|
bool compare_reference(
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
ElementCompute alpha,
|
|
ElementCompute beta) {
|
|
|
|
tensor_D.sync_host();
|
|
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0);
|
|
|
|
if (tensor_D.size() > 1)
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0);
|
|
|
|
if (reference_D.size() > 1)
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0);
|
|
|
|
bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view());
|
|
|
|
EXPECT_TRUE(passed);
|
|
|
|
if (!passed) {
|
|
|
|
std::stringstream fname;
|
|
|
|
fname << "error_Gemm_device_"
|
|
<< problem_size.m() << "x"
|
|
<< problem_size.n() << "x"
|
|
<< problem_size.k() << "_"
|
|
<< Gemm::ThreadblockShape::kM << "x"
|
|
<< Gemm::ThreadblockShape::kN << "x"
|
|
<< Gemm::ThreadblockShape::kK << "_"
|
|
<< Gemm::WarpShape::kM << "x"
|
|
<< Gemm::WarpShape::kN << "x"
|
|
<< Gemm::WarpShape::kK << ".txt";
|
|
|
|
std::ofstream file(fname.str());
|
|
|
|
file
|
|
<< "problem: " << problem_size
|
|
<< ", alpha: " << alpha << ", beta: " << beta << "\n\n";
|
|
|
|
file
|
|
<< "A =\n" << tensor_A.host_view()
|
|
<< "\nB =\n" << tensor_B.host_view()
|
|
<< "\nC =\n" << tensor_C.host_view()
|
|
<< "\n\nReference =\n" << reference_D.host_view()
|
|
<< "\nComputed =\n" << tensor_D.host_view();
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
/// Verifies the result is a GEMM
|
|
bool verify(
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
ElementCompute alpha,
|
|
ElementCompute beta) {
|
|
|
|
//
|
|
// Verify
|
|
//
|
|
|
|
cutlass::reference::host::Gemm<
|
|
typename Gemm::ElementA, typename Gemm::LayoutA,
|
|
typename Gemm::ElementB, typename Gemm::LayoutB,
|
|
typename Gemm::ElementC, typename Gemm::LayoutC, ElementCompute,
|
|
ElementAccumulator, typename Gemm::Operator>
|
|
reference_gemm;
|
|
|
|
reference_gemm(
|
|
problem_size,
|
|
alpha,
|
|
tensor_A.host_ref(),
|
|
tensor_B.host_ref(),
|
|
beta,
|
|
reference_D.host_ref(),
|
|
ElementAccumulator(0)
|
|
);
|
|
|
|
if (Relu) {
|
|
for (int i = 0; i < problem_size.m(); ++i) {
|
|
for (int j = 0; j < problem_size.n(); ++j) {
|
|
reference_D.at(cutlass::MatrixCoord(i, j)) =
|
|
((ElementCompute)reference_D.at(cutlass::MatrixCoord(i, j)) < (ElementCompute)0)
|
|
? (typename Gemm::ElementC)0
|
|
: reference_D.at(cutlass::MatrixCoord(i, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
return compare_reference(problem_size, alpha, beta);
|
|
}
|
|
|
|
/// Determine if the CUDA device is sufficient to run the kernel
|
|
bool sufficient() const {
|
|
//
|
|
// Determine SMEM requirements and waive if not satisfied
|
|
//
|
|
|
|
size_t smem_size = sizeof(typename Gemm::GemmKernel::SharedStorage);
|
|
|
|
cudaDeviceProp properties;
|
|
int device_idx;
|
|
cudaError_t result = cudaGetDevice(&device_idx);
|
|
|
|
if (result != cudaSuccess) {
|
|
throw std::runtime_error("cudaGetDevice() API call failed.");
|
|
}
|
|
|
|
result = cudaGetDeviceProperties(&properties, device_idx);
|
|
|
|
if (result != cudaSuccess) {
|
|
throw std::runtime_error("cudaGetDeviceProperties() failed");
|
|
}
|
|
|
|
if (properties.sharedMemPerBlockOptin < smem_size) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Executes one test
|
|
bool run(
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
int split_k_slices = 1,
|
|
ElementCompute alpha = ElementCompute(1),
|
|
ElementCompute beta = ElementCompute(0))
|
|
{
|
|
/*
|
|
std::cout << "\n-----------------------\n";
|
|
std::cout << "problem size: " << problem_size << "\n";
|
|
std::cout << "split_k_slices: " << split_k_slices << "\n";
|
|
std::cout << "alpha: " << alpha << "\n";
|
|
std::cout << "beta: " << beta << "\n";
|
|
std::cout << "-----------------------\n\n";
|
|
*/
|
|
|
|
// Waive test if insufficient CUDA device
|
|
if (!sufficient()) {
|
|
if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
|
|
std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
this->initialize(problem_size);
|
|
|
|
//
|
|
// Initialize the GEMM operator
|
|
//
|
|
|
|
typename Gemm::Arguments arguments{
|
|
problem_size,
|
|
tensor_A.device_ref(),
|
|
tensor_B.device_ref(),
|
|
tensor_C.device_ref(),
|
|
tensor_D.device_ref(),
|
|
{alpha, beta},
|
|
split_k_slices
|
|
};
|
|
|
|
Gemm gemm_op;
|
|
|
|
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
|
|
|
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
|
|
|
cutlass::Status status = gemm_op.initialize(arguments, workspace.get());
|
|
|
|
if (status != cutlass::Status::kSuccess) {
|
|
cudaError_t error = cudaGetLastError();
|
|
std::cerr << "This test is not supported: " << cudaGetErrorString(error) << "\n";
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Run the GEMM
|
|
//
|
|
|
|
status = gemm_op();
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
|
|
|
|
//
|
|
// Verify
|
|
//
|
|
|
|
bool passed = this->verify(problem_size, alpha, beta);
|
|
|
|
if (!passed) {
|
|
std::cout << "Error with split_k_slices = " << split_k_slices << ", alpha: " << alpha << std::endl;
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Gemm, bool Relu=false>
|
|
bool TestAllGemmBasic(
|
|
const typename Gemm::LayoutA::Stride& stride_factor_A = typename Gemm::LayoutA::Stride(),
|
|
const typename Gemm::LayoutB::Stride& stride_factor_B = typename Gemm::LayoutB::Stride(),
|
|
const typename Gemm::LayoutC::Stride& stride_factor_C = typename Gemm::LayoutC::Stride()) {
|
|
bool passed = true;
|
|
|
|
int const kMinimumOperandElementSize =
|
|
std::min(
|
|
int(cutlass::sizeof_bits<typename Gemm::ElementA>::value),
|
|
int(cutlass::sizeof_bits<typename Gemm::ElementB>::value));
|
|
|
|
int const kAlignment = cutlass::platform::is_same<
|
|
typename Gemm::OperatorClass,
|
|
cutlass::arch::OpClassSimt>::value ? 1 : 128 / kMinimumOperandElementSize;
|
|
|
|
// int8_t gemm alignment constraints
|
|
int const kAlignmentM = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value &&
|
|
cutlass::platform::is_same<typename Gemm::ElementA, int8_t>::value &&
|
|
cutlass::platform::is_same<typename Gemm::LayoutA, cutlass::layout::ColumnMajor>::value ? 4 : kAlignment;
|
|
|
|
int const kAlignmentN = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value &&
|
|
cutlass::platform::is_same<typename Gemm::ElementB, int8_t>::value &&
|
|
cutlass::platform::is_same<typename Gemm::LayoutB, cutlass::layout::RowMajor>::value ? 4 : kAlignment;
|
|
|
|
int const kAlignmentK = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value &&
|
|
cutlass::platform::is_same<typename Gemm::ElementA, int8_t>::value &&
|
|
cutlass::platform::is_same<typename Gemm::ElementB, int8_t>::value &&
|
|
(cutlass::platform::is_same<typename Gemm::LayoutA, cutlass::layout::RowMajor>::value ||
|
|
cutlass::platform::is_same<typename Gemm::LayoutB, cutlass::layout::ColumnMajor>::value) ? 4 : kAlignment;
|
|
|
|
int problem_size_m[] = {kAlignmentM, 512 - 3 * kAlignmentM};
|
|
|
|
int problem_size_n[] = {kAlignmentN, 512 - 2 * kAlignmentN};
|
|
|
|
int problem_size_k[] = {
|
|
kAlignmentK, Gemm::ThreadblockShape::kK * (Gemm::kStages + 1) - kAlignmentK};
|
|
|
|
int split_k_slices[] = {
|
|
1, 2, 3
|
|
};
|
|
|
|
double problem_alpha[] = {
|
|
1
|
|
};
|
|
|
|
double problem_beta[] = {
|
|
2.0
|
|
};
|
|
|
|
Testbed<Gemm, Relu> testbed(stride_factor_A, stride_factor_B, stride_factor_C);
|
|
|
|
using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
|
|
|
|
for (int m : problem_size_m) {
|
|
for (int n : problem_size_n) {
|
|
for (int k : problem_size_k) {
|
|
for (int split_k : split_k_slices) {
|
|
|
|
if (!Gemm::kSplitKSerial && split_k > 1) {
|
|
continue;
|
|
}
|
|
|
|
if (split_k > 1 && k / Gemm::ThreadblockShape::kK < split_k) {
|
|
continue;
|
|
}
|
|
|
|
for (auto alpha : problem_alpha) {
|
|
for (auto beta : problem_beta) {
|
|
|
|
cutlass::gemm::GemmCoord problem_size(m, n, k);
|
|
passed = testbed.run(
|
|
problem_size,
|
|
split_k,
|
|
cutlass::from_real<ElementCompute>(alpha),
|
|
cutlass::from_real<ElementCompute>(beta)
|
|
);
|
|
|
|
if (!passed) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Gemm, bool Relu=false>
|
|
bool TestAllGemm(
|
|
const typename Gemm::LayoutA::Stride& stride_factor_A,
|
|
const typename Gemm::LayoutB::Stride& stride_factor_B = typename Gemm::LayoutB::Stride(),
|
|
const typename Gemm::LayoutC::Stride& stride_factor_C = typename Gemm::LayoutC::Stride())
|
|
{
|
|
// Test basic GEMM with non-default stride factors
|
|
return TestAllGemmBasic<Gemm, Relu>(stride_factor_A, stride_factor_B, stride_factor_C);
|
|
}
|
|
|
|
template <typename Gemm, bool Relu=false>
|
|
bool TestAllGemm()
|
|
{
|
|
#ifdef NDEBUG
|
|
// Non-debug builds also test basic GEMM with default stride factors
|
|
if (!TestAllGemmBasic<Gemm, Relu>()) {
|
|
return false;
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// Test universal GEMM
|
|
#if 0
|
|
// Define the universal kernel
|
|
using UniversalKernel = cutlass::gemm::kernel::GemmUniversal<
|
|
typename Gemm::GemmKernel::Mma, // Mma
|
|
typename Gemm::GemmKernel::Epilogue, // Epilogue
|
|
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<> // ThreadblockSwizzle
|
|
>;
|
|
#else
|
|
// Define the streamk universal kernel
|
|
using UniversalKernel = cutlass::gemm::kernel::GemmUniversalStreamk<
|
|
typename Gemm::GemmKernel::Mma, // Mma
|
|
typename Gemm::GemmKernel::Epilogue, // Epilogue
|
|
cutlass::gemm::threadblock::ThreadblockSwizzleStreamK // ThreadblockSwizzle
|
|
>;
|
|
#endif
|
|
|
|
// Define the universal adaptor
|
|
using UniversalGemm = cutlass::gemm::device::GemmUniversalAdapter<UniversalKernel>;
|
|
|
|
// Test universal GEMM
|
|
return TestAllGemmUniversal<UniversalGemm, Relu>();
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename Gemm>
|
|
bool TestGemmPerf(int iterations = 1) {
|
|
bool passed = true;
|
|
|
|
int problem_size_m[] = { 2048 };
|
|
|
|
int problem_size_n[] = { 4352 };
|
|
|
|
int problem_size_k[] = { 4096 };
|
|
|
|
int split_k_slices[] = { 1 };
|
|
double problem_alpha[] = { 1 };
|
|
double problem_beta[] = { 0.0 };
|
|
|
|
Testbed<Gemm> testbed;
|
|
|
|
using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
|
|
|
|
for (int m : problem_size_m) {
|
|
for (int n : problem_size_n) {
|
|
for (int k : problem_size_k) {
|
|
for (int split_k : split_k_slices) {
|
|
|
|
if (!Gemm::kSplitKSerial && split_k > 1) {
|
|
continue;
|
|
}
|
|
|
|
for (auto alpha : problem_alpha) {
|
|
for (auto beta : problem_beta) {
|
|
|
|
cutlass::gemm::GemmCoord problem_size(m, n, k);
|
|
|
|
for (int i = 0; i < iterations; i++){
|
|
passed = testbed.run(
|
|
problem_size,
|
|
split_k,
|
|
cutlass::from_real<ElementCompute>(alpha),
|
|
cutlass::from_real<ElementCompute>(beta)
|
|
);
|
|
}
|
|
|
|
if (!passed) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
} // namespace device
|
|
} // namespace gemm
|
|
} // namespace test
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|