cutlass/test/unit/gemm/device/testbed.h

600 lines
20 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#pragma once
#include <iostream>
#include <fstream>
#include <sstream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/gemm.h"
#include "testbed_utils.h"
#include "testbed_universal.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
namespace test {
namespace gemm {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Gemm, bool Relu = false>
struct Testbed {
using ElementA = typename Gemm::ElementA;
using ElementB = typename Gemm::ElementB;
using ElementC = typename Gemm::ElementC;
using ElementAccumulator = typename Gemm::ElementAccumulator;
using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute;
/// Initialization
typename Gemm::LayoutA::Stride stride_factor_A;
typename Gemm::LayoutB::Stride stride_factor_B;
typename Gemm::LayoutC::Stride stride_factor_C;
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
uint64_t seed;
cutlass::HostTensor<typename Gemm::ElementA, typename Gemm::LayoutA> tensor_A;
cutlass::HostTensor<typename Gemm::ElementB, typename Gemm::LayoutB> tensor_B;
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_C;
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_D;
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> reference_D;
//
// Methods
//
Testbed(
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
stride_factor_A(typename Gemm::LayoutA::Stride()),
stride_factor_B(typename Gemm::LayoutB::Stride()),
stride_factor_C(typename Gemm::LayoutC::Stride()),
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
Testbed(
typename Gemm::LayoutA::Stride stride_factor_A_,
typename Gemm::LayoutB::Stride stride_factor_B_,
typename Gemm::LayoutC::Stride stride_factor_C_,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
stride_factor_A(stride_factor_A_),
stride_factor_B(stride_factor_B_),
stride_factor_C(stride_factor_C_),
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
bool initialize_tensor(
cutlass::TensorView<Element, Layout> view,
cutlass::Distribution::Kind dist_kind,
uint64_t seed) {
if (dist_kind == cutlass::Distribution::Uniform) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
int bits_output = cutlass::sizeof_bits<typename Gemm::ElementC>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
} else if (bits_input <= 8) {
scope_max = 1;
scope_min = -1;
} else if (bits_output == 16) {
scope_max = 5;
scope_min = -5;
} else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::host::TensorFillRandomUniform(
view, seed, scope_max, scope_min, 0);
}
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
else {
EXPECT_TRUE(false) << "Not implemented";
return false;
}
return true;
}
/// Initializes data structures
void initialize(cutlass::gemm::GemmCoord problem_size) {
//
// Allocate the GEMM workspace
//
tensor_A.resize(problem_size.mk(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutA>::layout_factory(problem_size.mk(), stride_factor_A));
tensor_B.resize(problem_size.kn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutB>::layout_factory(problem_size.kn(), stride_factor_B));
tensor_C.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C));
tensor_D.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C));
reference_D.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C), false);
EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019));
EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018));
EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017));
// It is possible to randomly initialize to all zeros, so override this with non-zeros
// in the upper left corner of each operand.
tensor_A.host_view().at({0, 0}) = typename Gemm::ElementA(1);
tensor_B.host_view().at({0, 0}) = typename Gemm::ElementB(1);
tensor_C.host_view().at(cutlass::make_Coord(0, 0)) = typename Gemm::ElementC(1);
cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view());
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D.sync_device();
}
/// Compares computed reference with device reference and outputs to a file if incorrect
bool compare_reference(
cutlass::gemm::GemmCoord problem_size,
ElementCompute alpha,
ElementCompute beta) {
tensor_D.sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0);
if (tensor_D.size() > 1)
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0);
if (reference_D.size() > 1)
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0);
bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view());
EXPECT_TRUE(passed);
if (!passed) {
std::stringstream fname;
fname << "error_Gemm_device_"
<< problem_size.m() << "x"
<< problem_size.n() << "x"
<< problem_size.k() << "_"
<< Gemm::ThreadblockShape::kM << "x"
<< Gemm::ThreadblockShape::kN << "x"
<< Gemm::ThreadblockShape::kK << "_"
<< Gemm::WarpShape::kM << "x"
<< Gemm::WarpShape::kN << "x"
<< Gemm::WarpShape::kK << ".txt";
std::ofstream file(fname.str());
file
<< "problem: " << problem_size
<< ", alpha: " << alpha << ", beta: " << beta << "\n\n";
file
<< "A =\n" << tensor_A.host_view()
<< "\nB =\n" << tensor_B.host_view()
<< "\nC =\n" << tensor_C.host_view()
<< "\n\nReference =\n" << reference_D.host_view()
<< "\nComputed =\n" << tensor_D.host_view();
}
return passed;
}
/// Verifies the result is a GEMM
bool verify(
cutlass::gemm::GemmCoord problem_size,
ElementCompute alpha,
ElementCompute beta) {
//
// Verify
//
cutlass::reference::host::Gemm<
typename Gemm::ElementA, typename Gemm::LayoutA,
typename Gemm::ElementB, typename Gemm::LayoutB,
typename Gemm::ElementC, typename Gemm::LayoutC, ElementCompute,
ElementAccumulator, typename Gemm::Operator>
reference_gemm;
reference_gemm(
problem_size,
alpha,
tensor_A.host_ref(),
tensor_B.host_ref(),
beta,
reference_D.host_ref(),
ElementAccumulator(0)
);
if (Relu) {
for (int i = 0; i < problem_size.m(); ++i) {
for (int j = 0; j < problem_size.n(); ++j) {
reference_D.at(cutlass::MatrixCoord(i, j)) =
((ElementCompute)reference_D.at(cutlass::MatrixCoord(i, j)) < (ElementCompute)0)
? (typename Gemm::ElementC)0
: reference_D.at(cutlass::MatrixCoord(i, j));
}
}
}
return compare_reference(problem_size, alpha, beta);
}
/// Determine if the CUDA device is sufficient to run the kernel
bool sufficient() const {
//
// Determine SMEM requirements and waive if not satisfied
//
size_t smem_size = sizeof(typename Gemm::GemmKernel::SharedStorage);
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.sharedMemPerBlockOptin < smem_size) {
return false;
}
return true;
}
/// Executes one test
bool run(
cutlass::gemm::GemmCoord problem_size,
int split_k_slices = 1,
ElementCompute alpha = ElementCompute(1),
ElementCompute beta = ElementCompute(0))
{
/*
std::cout << "\n-----------------------\n";
std::cout << "problem size: " << problem_size << "\n";
std::cout << "split_k_slices: " << split_k_slices << "\n";
std::cout << "alpha: " << alpha << "\n";
std::cout << "beta: " << beta << "\n";
std::cout << "-----------------------\n\n";
*/
// Waive test if insufficient CUDA device
if (!sufficient()) {
if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
}
return true;
}
this->initialize(problem_size);
//
// Initialize the GEMM operator
//
typename Gemm::Arguments arguments{
problem_size,
tensor_A.device_ref(),
tensor_B.device_ref(),
tensor_C.device_ref(),
tensor_D.device_ref(),
{alpha, beta},
split_k_slices
};
Gemm gemm_op;
size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
cutlass::Status status = gemm_op.initialize(arguments, workspace.get());
if (status != cutlass::Status::kSuccess) {
cudaError_t error = cudaGetLastError();
std::cerr << "This test is not supported: " << cudaGetErrorString(error) << "\n";
return true;
}
//
// Run the GEMM
//
status = gemm_op();
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
//
// Verify
//
bool passed = this->verify(problem_size, alpha, beta);
if (!passed) {
std::cout << "Error with split_k_slices = " << split_k_slices << ", alpha: " << alpha << std::endl;
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Gemm, bool Relu=false>
bool TestAllGemmBasic(
const typename Gemm::LayoutA::Stride& stride_factor_A = typename Gemm::LayoutA::Stride(),
const typename Gemm::LayoutB::Stride& stride_factor_B = typename Gemm::LayoutB::Stride(),
const typename Gemm::LayoutC::Stride& stride_factor_C = typename Gemm::LayoutC::Stride()) {
bool passed = true;
int const kMinimumOperandElementSize =
std::min(
int(cutlass::sizeof_bits<typename Gemm::ElementA>::value),
int(cutlass::sizeof_bits<typename Gemm::ElementB>::value));
int const kAlignment = cutlass::platform::is_same<
typename Gemm::OperatorClass,
cutlass::arch::OpClassSimt>::value ? 1 : 128 / kMinimumOperandElementSize;
// int8_t gemm alignment constraints
int const kAlignmentM = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value &&
cutlass::platform::is_same<typename Gemm::ElementA, int8_t>::value &&
cutlass::platform::is_same<typename Gemm::LayoutA, cutlass::layout::ColumnMajor>::value ? 4 : kAlignment;
int const kAlignmentN = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value &&
cutlass::platform::is_same<typename Gemm::ElementB, int8_t>::value &&
cutlass::platform::is_same<typename Gemm::LayoutB, cutlass::layout::RowMajor>::value ? 4 : kAlignment;
int const kAlignmentK = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value &&
cutlass::platform::is_same<typename Gemm::ElementA, int8_t>::value &&
cutlass::platform::is_same<typename Gemm::ElementB, int8_t>::value &&
(cutlass::platform::is_same<typename Gemm::LayoutA, cutlass::layout::RowMajor>::value ||
cutlass::platform::is_same<typename Gemm::LayoutB, cutlass::layout::ColumnMajor>::value) ? 4 : kAlignment;
int problem_size_m[] = {kAlignmentM, 512 - 3 * kAlignmentM};
int problem_size_n[] = {kAlignmentN, 512 - 2 * kAlignmentN};
int problem_size_k[] = {
kAlignmentK, Gemm::ThreadblockShape::kK * (Gemm::kStages + 1) - kAlignmentK};
int split_k_slices[] = {
1, 2, 3
};
double problem_alpha[] = {
1
};
double problem_beta[] = {
2.0
};
Testbed<Gemm, Relu> testbed(stride_factor_A, stride_factor_B, stride_factor_C);
using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
for (int m : problem_size_m) {
for (int n : problem_size_n) {
for (int k : problem_size_k) {
for (int split_k : split_k_slices) {
if (!Gemm::kSplitKSerial && split_k > 1) {
continue;
}
if (split_k > 1 && k / Gemm::ThreadblockShape::kK < split_k) {
continue;
}
for (auto alpha : problem_alpha) {
for (auto beta : problem_beta) {
cutlass::gemm::GemmCoord problem_size(m, n, k);
passed = testbed.run(
problem_size,
split_k,
cutlass::from_real<ElementCompute>(alpha),
cutlass::from_real<ElementCompute>(beta)
);
if (!passed) {
return false;
}
}
}
}
}
}
}
return passed;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Gemm, bool Relu=false>
bool TestAllGemm(
const typename Gemm::LayoutA::Stride& stride_factor_A,
const typename Gemm::LayoutB::Stride& stride_factor_B = typename Gemm::LayoutB::Stride(),
const typename Gemm::LayoutC::Stride& stride_factor_C = typename Gemm::LayoutC::Stride())
{
// Test basic GEMM with non-default stride factors
return TestAllGemmBasic<Gemm, Relu>(stride_factor_A, stride_factor_B, stride_factor_C);
}
template <typename Gemm, bool Relu=false>
bool TestAllGemm()
{
#ifdef NDEBUG
// Non-debug builds also test basic GEMM with default stride factors
if (!TestAllGemmBasic<Gemm, Relu>()) {
return false;
}
#endif // NDEBUG
// Test universal GEMM
#if 0
// Define the universal kernel
using UniversalKernel = cutlass::gemm::kernel::GemmUniversal<
typename Gemm::GemmKernel::Mma, // Mma
typename Gemm::GemmKernel::Epilogue, // Epilogue
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<> // ThreadblockSwizzle
>;
#else
// Define the streamk universal kernel
using UniversalKernel = cutlass::gemm::kernel::GemmUniversalStreamk<
typename Gemm::GemmKernel::Mma, // Mma
typename Gemm::GemmKernel::Epilogue, // Epilogue
cutlass::gemm::threadblock::ThreadblockSwizzleStreamK // ThreadblockSwizzle
>;
#endif
// Define the universal adaptor
using UniversalGemm = cutlass::gemm::device::GemmUniversalAdapter<UniversalKernel>;
// Test universal GEMM
return TestAllGemmUniversal<UniversalGemm, Relu>();
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Gemm>
bool TestGemmPerf(int iterations = 1) {
bool passed = true;
int problem_size_m[] = { 2048 };
int problem_size_n[] = { 4352 };
int problem_size_k[] = { 4096 };
int split_k_slices[] = { 1 };
double problem_alpha[] = { 1 };
double problem_beta[] = { 0.0 };
Testbed<Gemm> testbed;
using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
for (int m : problem_size_m) {
for (int n : problem_size_n) {
for (int k : problem_size_k) {
for (int split_k : split_k_slices) {
if (!Gemm::kSplitKSerial && split_k > 1) {
continue;
}
for (auto alpha : problem_alpha) {
for (auto beta : problem_beta) {
cutlass::gemm::GemmCoord problem_size(m, n, k);
for (int i = 0; i < iterations; i++){
passed = testbed.run(
problem_size,
split_k,
cutlass::from_real<ElementCompute>(alpha),
cutlass::from_real<ElementCompute>(beta)
);
}
if (!passed) {
return false;
}
}
}
}
}
}
}
return passed;
}
} // namespace device
} // namespace gemm
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////