cutlass/test/unit/epilogue/threadblock/epilogue_simt.cu

1173 lines
26 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/complex.h"
#include "cutlass/quaternion.h"
#include "cutlass/gemm/warp/mma_simt.h"
#include "cutlass/gemm/warp/mma_simt_policy.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "testbed.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Real-valued single precision tests
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_f32_32x64_32x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using Element = float;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<4, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_f32_32x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using Element = float;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<4, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_f32_64x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using Element = float;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<4, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_f32_128x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using Element = float;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<4, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Real-valued double precision tests
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_f64_32x64_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = double;
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM50_Epilogue_threadblock_epilogue, simt_f64_32x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = double;
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM50_Epilogue_threadblock_epilogue, simt_f64_64x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = double;
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM50_Epilogue_threadblock_epilogue, simt_f64_128x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = double;
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Complex-valued single-precision
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_complex_f32_32x64_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::complex<float>;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_complex_f32_32x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::complex<float>;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM50_Epilogue_threadblock_epilogue, simt_complex_f32_128x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::complex<float>;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Complex-valued double-precision
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_complex_f64_32x64_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::complex<double>;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<1, 1, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_complex_f64_32x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::complex<double>;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<1, 1, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM50_Epilogue_threadblock_epilogue, simt_complex_f64_128x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::complex<double>;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<1, 1, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Quaternion-valued single-precision
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Epilogue_threadblock_epilogue, simt_quaternion_f32_32x64_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::Quaternion<float>;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<2, 2, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}