cutlass/test/unit/epilogue/threadblock/epilogue_planar_complex.cu

511 lines
14 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/half.h"
#include "cutlass/epilogue/thread/linear_combination_planar_complex.h"
// Tensor Op
#include "cutlass/gemm/warp/default_mma_tensor_op.h"
// Volta Tensor Op
#include "cutlass/gemm/warp/mma_tensor_op_sm70.h"
#include "cutlass/epilogue/warp/fragment_iterator_volta_tensor_op.h"
// Simt
#include "cutlass/gemm/warp/mma_simt.h"
#include "cutlass/gemm/warp/mma_simt_policy.h"
// Epilogue components
#include "cutlass/epilogue/threadblock/default_epilogue_planar_complex.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "testbed_planar_complex.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_threadblock_epilogue, planar_complex_f32_f32_tensor_op_64x64_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape,
InstructionShape,
Element, LayoutA,
Element, LayoutB,
ElementAccumulator, cutlass::layout::RowMajor
>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex<
Shape,
WarpMmaTensorOp,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpiloguePlanarComplexTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_threadblock_epilogue, planar_complex_f16_f32_tensor_op_64x64_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape,
InstructionShape,
Element, LayoutA,
Element, LayoutB,
ElementAccumulator, cutlass::layout::RowMajor
>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex<
Shape,
WarpMmaTensorOp,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpiloguePlanarComplexTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_threadblock_epilogue, planar_complex_f16_f16_tensor_op_64x64_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape,
InstructionShape,
Element, LayoutA,
Element, LayoutB,
ElementAccumulator, cutlass::layout::RowMajor
>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex<
Shape,
WarpMmaTensorOp,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpiloguePlanarComplexTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_threadblock_epilogue, planar_complex_f32_f32_volta_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<32, 32, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>;
using Element = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<Element>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<Element>::value>;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
Element,
cutlass::layout::ColumnMajor,
Element,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
ElementAccumulator,
cutlass::layout::RowMajor,
Policy
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex<
Shape,
WarpMmaTensorOp,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm70,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpiloguePlanarComplexTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_threadblock_epilogue, planar_complex_simt_f32_64x64_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using Element = float;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<4, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex<
Shape,
WarpMmaSimt,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm50,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpiloguePlanarComplexTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_threadblock_epilogue, planar_complex_simt_f64_64x64_16x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<16, 32, 8>;
using Element = double;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<4, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex<
Shape,
WarpMmaSimt,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm50,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpiloguePlanarComplexTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////