cutlass/test/unit/cute/ampere/ldsm.cu

432 lines
14 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "cutlass_unit_test.h"
#include <iostream>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
#include <cute/atom/copy_traits_sm75.hpp>
using namespace cute;
template <class T>
__global__ void
ldsm_test_device(uint16_t* g_in, uint16_t* g_out)
{
constexpr int count = sizeof(T) / 4;
int tid = threadIdx.x;
int stride = blockDim.x;
// load input gmem -> smem
__shared__ uint32_t smem[32 * count];
for (int i = 0; i < count; ++i) {
smem[tid + (stride * i)] = reinterpret_cast<uint32_t*>(g_in)[tid + (stride * i)];
}
__syncthreads();
uint32_t reg[count];
for (int i = 0; i < count; ++i) {
reg[i] = 0;
}
// load smem -> rmem using LDSM
uint128_t* smem_ptr = reinterpret_cast<uint128_t*>(smem) + tid;
T* rmem_ptr = reinterpret_cast<T*>(reg);
cute::copy_ldsm(smem_ptr, rmem_ptr);
// store output rmem -> gmem
for (int i = 0; i < count; ++i) {
reinterpret_cast<uint32_t*>(g_out)[tid + (stride * i)] = reg[i];
}
}
template <class TiledCopy, class SmemLayout>
__global__ void
ldsm_test_device_cute(uint16_t* g_in, uint16_t* g_out,
TiledCopy tiled_copy, SmemLayout smem_layout)
{
using namespace cute;
__shared__ uint16_t smem[size(smem_layout)];
auto t_g_in = make_tensor(make_gmem_ptr(g_in), smem_layout);
auto t_g_out = make_tensor(make_gmem_ptr(g_out), smem_layout);
auto t_smem = make_tensor(make_smem_ptr(smem), smem_layout);
int tid = threadIdx.x;
// Load input gmem -> smem
for (int i = tid; i < size(t_smem); i += size(tiled_copy)) {
t_smem(i) = t_g_in(i);
}
__syncthreads();
auto thr_copy = tiled_copy.get_thread_slice(tid);
auto tXsX = thr_copy.partition_S(t_smem); // (V,M,N)
auto tXgX = thr_copy.partition_D(t_g_out); // (V,M,N)
auto tXrX = make_tensor<uint16_t>(shape(tXgX)); // (V,M,N)
clear(tXrX); // Just to make sure
/*
if (thread0()) {
print("tXsX: " ); print(tXsX.layout()); print("\n");
print("tXgX: " ); print(tXgX.layout()); print("\n");
print("tXrX: " ); print(tXrX.layout()); print("\n");
}
*/
// Copy smem -> rmem via tiled_copy (LDSM, LDS)
copy(tiled_copy, tXsX, tXrX);
// Output rmem -> gmem
copy(tXrX, tXgX);
}
TEST(SM80_CuTe_Ampere, Ldsm)
{
constexpr int count = 1024;
thrust::host_vector<uint16_t> h_in(count);
for (int i = 0; i < count; ++i) {
h_in[i] = uint16_t(i);
}
thrust::device_vector<uint16_t> d_in = h_in;
//
// LDSM 1x (32b)
//
{
thrust::device_vector<uint16_t> d_out(count);
ldsm_test_device<uint32_t><<<1, 32>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()));
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < 32; ++i) {
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("LDSM 1x ldsm_test_device SUCCESS\n");
}
//
// LDSM 2x (64b)
//
{
thrust::device_vector<uint16_t> d_out(count);
ldsm_test_device<uint64_t><<<1, 32>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()));
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < 64; ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("LDSM 2x ldsm_test_device SUCCESS\n");
}
//
// LDSM 4x (128b)
//
{
thrust::device_vector<uint16_t> d_out(count);
ldsm_test_device<uint128_t><<<1, 32>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()));
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < 128; ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("LDSM 4x ldsm_test_device SUCCESS\n");
}
//
// CuTe LDSM
//
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,Shape <_2, _4>>,
Stride< _2,Stride<_1,_64>>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U32x1_LDSM_N, uint16_t>{},
Layout<Shape<_32,_1>>{},
Layout<Shape< _1,_8>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x8 interleaved U32x1_LDSM_N SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,Shape <_2, _4>>,
Stride< _2,Stride<_1,_64>>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U32x2_LDSM_N, uint16_t>{},
Layout<Shape<_32,_1>>{},
Layout<Shape< _1,_8>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x8 interleaved U32x2_LDSM_N SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,Shape <_2, _4>>,
Stride< _2,Stride<_1,_64>>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U32x4_LDSM_N, uint16_t>{},
Layout<Shape<_32,_1>>{},
Layout<Shape< _1,_8>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x8 interleaved U32x4_LDSM_N SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,Shape <_2, _4>>,
Stride< _2,Stride<_1,_64>>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<UniversalCopy<uint16_t>, uint16_t>{},
Layout<Shape<_32,_1>>{},
Layout<Shape< _1,_8>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i] , h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x8 interleaved LDS.U16 SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,_32>,
Stride< _1,_32>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U32x1_LDSM_N, uint16_t>{},
Layout<Shape<_16,_2>>{},
Layout<Shape< _2,_4>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x32 U32x1_LDSM_N SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,_32>,
Stride< _1,_32>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U32x2_LDSM_N, uint16_t>{},
Layout<Shape<_16,_2>>{},
Layout<Shape< _2,_4>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x32 U32x2_LDSM_N SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,_32>,
Stride< _1,_32>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U32x4_LDSM_N, uint16_t>{},
Layout<Shape<_16,_2>>{},
Layout<Shape< _2,_4>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x32 U32x4_LDSM_N SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,_32>,
Stride< _1,_32>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<UniversalCopy<uint16_t>, uint16_t>{},
Layout<Shape<_16,_2>>{},
Layout<Shape< _2,_4>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x32 LDS.U16 SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,_32>,
Stride<_32, _1>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U16x2_LDSM_T, uint16_t>{},
Layout<Shape<_4,_8>>{},
Layout<Shape<_2,_1>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x32 U16x2_LDSM_T SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,_32>,
Stride<_32, _1>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U16x4_LDSM_T, uint16_t>{},
Layout<Shape<_4,_8>>{},
Layout<Shape<_4,_1>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x32 U16x4_LDSM_T SUCCESS\n");
}
{
thrust::device_vector<uint16_t> d_out(count);
auto smem_layout = Layout<Shape <_32,_32>,
Stride<_32, _1>>{};
auto tiled_copy = make_tiled_copy(Copy_Atom<SM75_U16x8_LDSM_T, uint16_t>{},
Layout<Shape<_4,_8>>{},
Layout<Shape<_8,_1>>{});
ldsm_test_device_cute<<<1, int(size(tiled_copy))>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tiled_copy,
smem_layout);
thrust::host_vector<uint16_t> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe 32x32 U16x8_LDSM_T SUCCESS\n");
}
CUTLASS_TRACE_HOST("PASS");
}