cutlass/test/unit/core/tensor_ref.cu

225 lines
6.6 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "../common/cutlass_unit_test.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/layout/matrix.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorRef, basic_rank2) {
int const M = 8;
int const N = 16;
int matrix_data[M * N] = {0};
cutlass::TensorRef<
int,
cutlass::IdentityTensorLayout<2> > matrix_ref(matrix_data, cutlass::make_Coord(N, 1));
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
matrix_ref.at(cutlass::make_Coord(m, n)) = m * N + n;
}
}
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
EXPECT_EQ(matrix_data[m * N + n], int(m * N + n));
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorRef, rank2_column_major) {
int const M = 8;
int const N = 8;
int matrix_data[M * N];
cutlass::TensorRef<int, cutlass::layout::ColumnMajor> ref(matrix_data, M);
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
ref.at(cutlass::make_Coord(m, n)) = m * N + n;
}
}
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
EXPECT_EQ(matrix_data[m + n * M], int(m * N + n));
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorRef, rank2_row_major) {
int const M = 8;
int const N = 16;
int matrix_data[M * N] = { 0 };
cutlass::TensorRef<int, cutlass::layout::RowMajor> ref(matrix_data, N);
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
ref.at(cutlass::make_Coord(m, n)) = m * N + n;
}
}
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
EXPECT_EQ(matrix_data[m * N + n], int(m * N + n));
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorRef, rank2_contiguous_dynamic) {
int const M = 8;
int const N = 16;
typedef cutlass::TensorRef<int, cutlass::layout::ContiguousMatrix> ContiguousTensorRef;
cutlass::layout::Matrix layouts[] = {
cutlass::layout::Matrix::kColumnMajor,
cutlass::layout::Matrix::kRowMajor
};
for (int i = 0; i < 2; ++i) {
int matrix_data[M * N] = { 0 };
int row_stride;
int col_stride;
if (layouts[i] == cutlass::layout::Matrix::kColumnMajor) {
row_stride = 1;
col_stride = M;
}
else {
row_stride = N;
col_stride = 1;
}
// Use helper to determine stride vector from leading dimension
ContiguousTensorRef ref(
matrix_data,
cutlass::layout::ContiguousMatrix::packed(cutlass::make_Coord(M, N), layouts[i]));
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
ref.at(cutlass::make_Coord(m, n)) = m * N + n;
}
}
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
EXPECT_EQ(matrix_data[m * row_stride + n * col_stride], int(m * N + n));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorRef, rank2_column_major_interleaved) {
int const M = 16;
int const N = 16;
int const kInterleave = 4;
int matrix_data[M * N] = {0};
// Define the Layout for a column-major interleaved matrix format
using Layout = cutlass::layout::ColumnMajorInterleaved<kInterleave>;
// Construct a TensorRef
cutlass::TensorRef<
int,
Layout> ref(matrix_data, Layout::packed(cutlass::make_Coord(M, N)));
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
ref.at(cutlass::make_Coord(m, n)) = m + n * M;
}
}
// Verify
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; n += kInterleave) {
for (int i = 0; i < kInterleave; ++i) {
EXPECT_EQ(matrix_data[m * kInterleave + n * M + i], int(m + (n + i) * M));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorRef, rank2_row_major_interleaved) {
int const M = 16;
int const N = 16;
int const kInterleave = 4;
int matrix_data[M * N] = {0};
// Define the Layout for a row-major interleaved matrix format
using Layout = cutlass::layout::RowMajorInterleaved<kInterleave>;
// Construct a TensorRef
cutlass::TensorRef<
int,
Layout> ref(matrix_data, Layout::packed(cutlass::make_Coord(M, N)));
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
ref.at(cutlass::make_Coord(m, n)) = m + n * M;
}
}
// Verify
for (int m = 0; m < M; m += kInterleave) {
for (int n = 0; n < N; ++n) {
for (int i = 0; i < kInterleave; ++i) {
EXPECT_EQ(matrix_data[m * N + i + n * kInterleave], int((m + i) + n * M));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////