cutlass/test/unit/core/bfloat16.cu

219 lines
7.2 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Statically sized array of elements that accommodates all CUTLASS-supported numeric types
and is safe to use in a union.
*/
#include "../common/cutlass_unit_test.h"
#include "cutlass/array.h"
#include "cutlass/core_io.h"
#include "cutlass/numeric_types.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/util/host_tensor.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
__global__ void convert_bf16_f32(cutlass::bfloat16_t *output, float const *input, int N) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < N) {
output[tid] = static_cast<cutlass::bfloat16_t>(input[tid]);
}
}
__global__ void convert_and_pack_bf16(cutlass::bfloat16_t *output, float const *input, int N) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid * 2 < N) {
cutlass::NumericArrayConverter<cutlass::bfloat16_t, float, 2> convert;
cutlass::Array<cutlass::bfloat16_t, 2> *dst_ptr =
reinterpret_cast<cutlass::Array<cutlass::bfloat16_t, 2> *>(output + tid * 2);
cutlass::Array<float, 2> const *src_ptr =
reinterpret_cast<cutlass::Array<float, 2> const *>(input + tid * 2);
*dst_ptr = convert(*src_ptr);
}
}
TEST(bfloat16_t, device_conversion) {
using T = cutlass::bfloat16_t;
using S = float;
int const N = 256;
cutlass::HostTensor<T, cutlass::layout::RowMajor> destination({N, 1});
cutlass::HostTensor<S, cutlass::layout::RowMajor> source({N, 1});
for (int i = 0; i < N; ++i) {
source.at({i, 0}) = float(i - 128);
destination.at({i, 0}) = T(0);
}
source.sync_device();
destination.sync_device();
convert_bf16_f32<<< dim3(1,1), dim3(N, 1) >>>(destination.device_data(), source.device_data(), N);
ASSERT_EQ(cudaGetLastError(), cudaSuccess) << "Kernel launch error.";
destination.sync_host();
int errors = 0;
for (int i = 0; i < N; ++i) {
T got = destination.at({i, 0});
S expected = source.at({i, 0});
if (S(got) != expected) {
++errors;
if (errors < 10) {
std::cerr << "Basic conversion error - [" << i << "] - got " << got << ", expected " << expected << "\n";
}
}
destination.at({i, 0}) = T(0);
}
destination.sync_device();
convert_and_pack_bf16<<< dim3(1,1), dim3(N, 1) >>>(destination.device_data(), source.device_data(), N);
ASSERT_EQ(cudaGetLastError(), cudaSuccess) << "Kernel launch error.";
destination.sync_host();
for (int i = 0; i < N; ++i) {
T got = destination.at({i, 0});
S expected = source.at({i, 0});
if (S(got) != expected) {
++errors;
if (errors < 10) {
std::cerr << "Convert and pack error - [" << i << "] - got " << got << ", expected " << expected << "\n";
}
}
}
EXPECT_EQ(errors, 0);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Host
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(bfloat16_t, host_conversion) {
for (int i = -128; i < 128; ++i) {
float f = static_cast<float>(i);
cutlass::bfloat16_t x = static_cast<cutlass::bfloat16_t>(i);
cutlass::bfloat16_t y = static_cast<cutlass::bfloat16_t>(f);
EXPECT_TRUE(static_cast<int>(x) == i);
EXPECT_TRUE(static_cast<float>(y) == f);
}
// Try out default-ctor (zero initialization of primitive proxy type)
EXPECT_TRUE(cutlass::bfloat16_t() == 0.0_bf16);
// Try out user-defined literals
EXPECT_TRUE(cutlass::bfloat16_t(7) == 7_bf16);
EXPECT_TRUE(7 == static_cast<int>(7_bf16));
}
TEST(bfloat16_t, host_arithmetic) {
for (int i = -100; i < 100; ++i) {
for (int j = -100; j < 100; ++j) {
cutlass::bfloat16_t x = static_cast<cutlass::bfloat16_t>(i);
cutlass::bfloat16_t y = static_cast<cutlass::bfloat16_t>(j);
EXPECT_TRUE(static_cast<int>(x + y) == (i + j));
}
}
}
TEST(bfloat16_t, host_round) {
struct {
uint32_t f32_bits;
uint16_t expected;
} tests[] = {
{0x40040000, 0x4004}, // M=0, R=0, S=0 => rtz
{0x40048000, 0x4004}, // M=0, R=1, S=0 => rtz
{0x40040001, 0x4004}, // M=0, R=1, S=1 => +inf
{0x4004c000, 0x4005}, // M=0, R=1, S=1 => +inf
{0x4004a000, 0x4005}, // M=0, R=1, S=1 => +inf
{0x40050000, 0x4005}, // M=1, R=0, S=0 => rtz
{0x40054000, 0x4005}, // M=1, R=0, S=1 => rtz
{0x40058000, 0x4006}, // M=1, R=1, S=0 => +inf
{0x40058001, 0x4006}, // M=1, R=1, S=1 => +inf
{0x7f800000, 0x7f80}, // +inf
{0xff800000, 0xff80}, // -inf
{0x7fffffff, 0x7fff}, // canonical NaN
{0x7ff00001, 0x7fff}, // NaN -> canonical NaN
{0xfff00010, 0x7fff}, // Nan -> canonical NaN
{0, 0}
};
bool running = true;
for (int i = 0; running; ++i) {
float f32 = reinterpret_cast<float const &>(tests[i].f32_bits);
cutlass::bfloat16_t bf16 = cutlass::bfloat16_t(f32);
bool passed = (tests[i].expected == bf16.raw());
EXPECT_TRUE(passed)
<< "Error - convert(f32: 0x" << std::hex << tests[i].f32_bits
<< ") -> 0x" << std::hex << tests[i].expected << "\ngot: 0x" << std::hex << bf16.raw();
if (!tests[i].f32_bits) {
running = false;
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Device
//
/////////////////////////////////////////////////////////////////////////////////////////////////