cutlass/test/unit/conv/cache_testbed_output.h

908 lines
24 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Helper to construct cached name for
*/
#pragma once
#include <typeinfo>
#include <fstream>
#include <list>
#include <utility>
#include <sstream>
#include "cutlass/cutlass.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/conv/convolution.h"
#include "cutlass/conv/conv2d_problem_size.h"
#include "cutlass/conv/conv3d_problem_size.h"
#include "cutlass/core_io.h"
#include "cutlass/util/tensor_view_io.h"
#include "thrust/universal_vector.h"
#ifndef CUTLASS_TEST_ENABLE_CACHED_RESULTS
#define CUTLASS_TEST_ENABLE_CACHED_RESULTS false
#endif
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test::conv::device {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Result of a test
struct CachedTestKey {
std::string op; ///< Concatenated string representation of operation performed
std::string problem; ///< Concatenated string representation of problem description
std::string types; ///< Concatenated string representation of operand types
uint32_t A; ///< Hashed result of tensor A
uint32_t B; ///< Hashed result of tensor B
uint32_t C; ///< Hashed result of tensor C
//
// Methods
//
inline CachedTestKey(): A(), B(), C() { }
inline CachedTestKey(
std::string op, ///< Concatenated string representation of operation performed
std::string problem, ///< Concatenated string representation of problem description
std::string types, ///< Concatenated string representation of operand types
uint32_t A, ///< Hashed result of tensor A
uint32_t B, ///< Hashed result of tensor B
uint32_t C ///< Hashed result of tensor C
):
op(op), problem(problem), types(types), A(A), B(B), C(C)
{ }
/// Checks for equality of the problem
bool operator==(CachedTestKey const &rhs) const {
return op == rhs.op && problem == rhs.problem && types == rhs.types && A == rhs.A && B == rhs.B && C == rhs.C;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
inline std::istream &operator>>(std::istream &in, CachedTestKey &result) {
in >> result.op;
in >> result.problem;
in >> result.types;
in >> result.A;
in >> result.B;
in >> result.C;
return in;
}
inline std::ostream &operator<<(std::ostream &out, CachedTestKey const &result) {
out << result.op << " ";
out << result.problem << " ";
out << result.types << " ";
out << result.A << " ";
out << result.B << " ";
out << result.C << " ";
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
struct CachedTestResult {
uint32_t D;
//
// Methods
//
CachedTestResult(): D()
{ }
CachedTestResult(uint32_t D): D(D)
{ }
operator bool() const {
return bool(D);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
inline std::istream &operator>>(std::istream &in, CachedTestResult &result) {
in >> result.D;
return in;
}
inline std::ostream &operator<<(std::ostream &out, CachedTestResult const &result) {
out << result.D;
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
struct CachedTestResultListing {
std::list<std::pair<CachedTestKey, CachedTestResult>> results;
//
// Methods
//
inline CachedTestResultListing(std::string const &path) {
std::ifstream file(path);
while (file.good()) {
CachedTestKey key;
file >> key;
CachedTestResult result;
file >> result;
if (result) {
results.push_back(std::make_pair(key, result));
}
}
}
/// Returns the cached result
std::pair<bool, CachedTestResult> find(CachedTestKey const &rhs) const {
for (auto const & result : results) {
if (result.first == rhs) {
return std::make_pair(true, result.second);
}
}
return std::make_pair(false, CachedTestResult());
}
/// Appends an entry
void append(CachedTestKey const &key, CachedTestResult const &result) {
if (result) {
results.push_back(std::make_pair(key, result));
}
}
/// Writes the entire listing to a file
bool write(std::string const &path) {
std::ofstream file(path);
if (!file.good()) {
return false;
}
for (auto const &result : results) {
file << result.first << result.second << std::endl;
}
return true;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Element>
struct ScalarEncoder {
Element scalar;
ScalarEncoder(Element s): scalar(s) { }
std::string str() const {
std::stringstream ss;
Element s = scalar;
if (s < Element()) {
s = -s;
ss << "n";
}
ss << s;
return ss.str();
}
};
template <typename Element>
ScalarEncoder<Element> EncodeScalar(Element a) {
return ScalarEncoder<Element>(a);
}
template <typename Element>
struct ScalarEncoder<cutlass::complex<Element>> {
cutlass::complex<Element> scalar;
ScalarEncoder(cutlass::complex<Element> s): scalar(s) { }
std::string str() const {
std::stringstream ss;
ss << EncodeScalar<Element>(scalar.real()) << "_" << EncodeScalar<Element>(scalar.imag()) << "i";
return ss.str();
}
};
template <typename Element>
std::ostream &operator<<(std::ostream &out, ScalarEncoder<Element> const &scalar) {
out << scalar.str();
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
inline char const *EncodeOperator(cutlass::conv::Operator conv_op) {
switch (conv_op) {
case cutlass::conv::Operator::kFprop: return "fprop";
case cutlass::conv::Operator::kDgrad: return "dgrad";
case cutlass::conv::Operator::kWgrad: return "wgrad";
case cutlass::conv::Operator::kDeconv: return "deconv";
}
return "conv_unknown";
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Encode GemmCoord (Gemm problem size)
inline std::ostream &EncodeProblemSize(
std::ostream &out,
cutlass::gemm::GemmCoord const &problem) {
out << problem.m() << "x" << problem.n() << "x" << problem.k() << "_";
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Encode Conv2dProblemSize
inline std::ostream &EncodeProblemSize(
std::ostream &out,
cutlass::conv::Conv2dProblemSize const &problem) {
out << problem.N << "x" << problem.H << "x" << problem.W << "x" << problem.C << "_"
<< problem.P << "x" << problem.Q << "_" << problem.K << "x" << problem.R << "x" << problem.S << "_";
out << "pad_h" << problem.pad_h << "w" << problem.pad_w << "_";
out << "stride_h" << problem.stride_h << "w" << problem.stride_w << "_";
out << "dil_h" << problem.dilation_h << "w" << problem.dilation_w << "_";
switch (problem.mode) {
case cutlass::conv::Mode::kCrossCorrelation:
out << "corr";
break;
case cutlass::conv::Mode::kConvolution:
out << "conv";
break;
}
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Encode Conv3dProblemSize
inline std::ostream &EncodeProblemSize(
std::ostream &out,
cutlass::conv::Conv3dProblemSize const &problem) {
out << problem.N << "x" << problem.D << "x" << problem.H << "x" << problem.W << "x" << problem.C << "_"
<< problem.Z << problem.P << "x" << problem.Q << "_" << problem.K << "x" << problem.R << "x" << problem.S << "_";
out << "pad_d" << problem.pad_h << "h" << problem.pad_h << "w" << problem.pad_w << "_";
out << "stride_d" << problem.stride_d << "h" << problem.stride_h << "w" << problem.stride_w << "_";
out << "dil_d" << problem.dilation_d << "h" << problem.dilation_h << "w" << problem.dilation_w << "_";
switch (problem.mode) {
case cutlass::conv::Mode::kCrossCorrelation:
out << "corr";
break;
case cutlass::conv::Mode::kConvolution:
out << "conv";
break;
}
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Encode 3.x ConvNd ProblemShape
template <class ProblemShape>
inline std::ostream &EncodeProblemSize(
std::ostream &out,
ProblemShape const& problem_shape) {
out << problem_shape.shape_A << "_";
out << problem_shape.shape_B << "_";
out << "padl" << problem_shape.lower_padding << "_";
out << "padu" << problem_shape.upper_padding << "_";
out << "str" << problem_shape.traversal_stride << "_";
out << "dil" << problem_shape.dilation << "_";
switch (problem_shape.mode) {
case cutlass::conv::Mode::kCrossCorrelation:
out << "corr";
break;
case cutlass::conv::Mode::kConvolution:
out << "conv";
break;
}
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Element>
inline std::string ElementTypeName() {
return std::string(typeid(Element).name());
}
template <>
inline std::string ElementTypeName<cutlass::half_t>() {
return "h";
}
template <>
inline std::string ElementTypeName<cutlass::complex<cutlass::half_t>>() {
return "ch";
}
template <>
inline std::string ElementTypeName<cutlass::bfloat16_t>() {
return "bf16";
}
template <>
inline std::string ElementTypeName<cutlass::complex<cutlass::bfloat16_t>>() {
return "cbf16";
}
template <>
inline std::string ElementTypeName<cutlass::tfloat32_t>() {
return "tf32";
}
template <>
inline std::string ElementTypeName<cutlass::complex<cutlass::tfloat32_t>>() {
return "ctf32";
}
template <>
inline std::string ElementTypeName<cutlass::complex<float>>() {
return "c";
}
template <>
inline std::string ElementTypeName<cutlass::complex<double>>() {
return "z";
}
template <>
inline std::string ElementTypeName<cutlass::Quaternion<float>>() {
return "q";
}
template <>
inline std::string ElementTypeName<int8_t>() {
return "s8";
}
template <>
inline std::string ElementTypeName<uint8_t>() {
return "u8";
}
template <>
inline std::string ElementTypeName<cutlass::int4b_t>() {
return "s4";
}
template <>
inline std::string ElementTypeName<cutlass::uint4b_t>() {
return "u4";
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Layout>
inline std::string LayoutTypeName() {
return std::string(typeid(Layout).name());
}
template <>
inline std::string LayoutTypeName<cutlass::layout::ColumnMajor>() {
return "n";
}
template <>
inline std::string LayoutTypeName<cutlass::layout::RowMajor>() {
return "t";
}
template <>
inline std::string LayoutTypeName<cutlass::layout::TensorNHWC>() {
return "nhwc";
}
template <>
inline std::string LayoutTypeName<cutlass::layout::TensorNCxHWx<32>>() {
return "nc32hw32";
}
template <>
inline std::string LayoutTypeName<cutlass::layout::TensorNCxHWx<64>>() {
return "nc64hw64";
}
template <>
inline std::string LayoutTypeName<cutlass::layout::TensorCxRSKx<32>>() {
return "c32rsk32";
}
template <>
inline std::string LayoutTypeName<cutlass::layout::TensorCxRSKx<64>>() {
return "c64rsk64";
}
template <>
inline std::string LayoutTypeName<cutlass::layout::TensorNDHWC>() {
return "ndhwc";
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Element, typename Layout>
inline std::string TensorTypeName() {
std::stringstream ss;
ss << ElementTypeName<Element>() << LayoutTypeName<Layout>();
return ss.str();
}
template <typename Element>
inline std::string TensorTypeName() {
std::stringstream ss;
ss << ElementTypeName<Element>();
return ss.str();
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Hash function on a byte array
struct CRC32 {
uint32_t table[256];
//
// Methods
//
CRC32() {
uint32_t rem;
int i, j;
for (i = 0; i < 256; i++) {
rem = i;
for (j = 0; j < 8; j++) {
if (rem & 1) {
rem >>= 1;
rem ^= 0xedb88320;
} else
rem >>= 1;
}
table[i] = rem;
}
}
/// Computes the CRC of an array of bytes
uint32_t operator()(void const *start, size_t length, uint32_t crc = uint32_t()) const {
uint8_t const *p = static_cast<uint8_t const *>(start);
uint8_t const *q = static_cast<uint8_t const *>(start) + length;
crc = ~crc;
for (; p != q; ++p) {
uint8_t octet = *p;
crc = (crc >> 8) ^ table[(crc & 0xff) ^ octet];
}
return ~crc;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename Element, typename Layout
>
uint32_t TensorHash(
cutlass::TensorView<Element, Layout> view,
CRC32 const &hash = CRC32(),
uint32_t crc = uint32_t()
) {
return hash(view.data(), view.capacity() * cutlass::sizeof_bits<Element>::value / 8, crc);
}
template <typename Element>
uint32_t TensorHash(
thrust::universal_vector<Element>& tensor,
CRC32 const &hash = CRC32(),
uint32_t crc = uint32_t()
) {
return hash(tensor.data().get(), tensor.size() * cutlass::sizeof_bits<Element>::value / 8, crc);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA, typename LayoutA,
typename ElementB, typename LayoutB,
typename ElementC, typename LayoutC,
typename ElementAccumulator,
typename ElementCompute
>
inline std::ostream &EncodeTypes(
std::ostream &out
) {
out << TensorTypeName<ElementA, LayoutA>() << "_"
<< TensorTypeName<ElementB, LayoutB>() << "_"
<< TensorTypeName<ElementC, LayoutC>() << "_"
<< ElementTypeName<ElementAccumulator>() << "_"
<< ElementTypeName<ElementCompute>();
return out;
}
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename ElementD
>
inline std::ostream &EncodeTypes(
std::ostream &out
) {
out << TensorTypeName<ElementA>() << "_"
<< TensorTypeName<ElementB>() << "_"
<< TensorTypeName<ElementC>() << "_"
<< ElementTypeName<ElementD>();
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA, typename LayoutA,
typename ElementB, typename LayoutB,
typename ElementC, typename LayoutC,
typename ElementAccumulator,
typename ElementCompute
>
inline CachedTestKey CreateCachedGemmTestKey(
cutlass::gemm::GemmCoord const &problem,
ElementCompute alpha,
ElementCompute beta,
cutlass::TensorView<ElementA, LayoutA> A,
cutlass::TensorView<ElementA, LayoutB> B,
cutlass::TensorView<ElementC, LayoutC> C
) {
CachedTestKey key;
// Encode gemm operator and problem sizes
key.op = "gemm";
std::stringstream ss_problem;
EncodeProblemSize(ss_problem, problem);
ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta);
key.problem = ss_problem.str();
// Encode problem data types
std::stringstream ss_types;
EncodeTypes<
ElementA, LayoutA,
ElementB, LayoutB,
ElementC, LayoutC,
ElementAccumulator,
ElementCompute>(ss_types);
key.types = ss_types.str();
// Encode hash for problem data
CRC32 crc_hash;
key.A = TensorHash(A, crc_hash);
key.B = TensorHash(B, crc_hash);
key.C = TensorHash(C, crc_hash);
return key;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA, typename LayoutA,
typename ElementB, typename LayoutB,
typename ElementC, typename LayoutC,
typename ElementAccumulator,
typename ElementCompute
>
inline CachedTestKey CreateCachedConv2dTestKey(
cutlass::conv::Operator conv_operator,
cutlass::conv::Conv2dProblemSize const &problem,
ElementCompute alpha,
ElementCompute beta,
cutlass::TensorView<ElementA, LayoutA> A,
cutlass::TensorView<ElementA, LayoutB> B,
cutlass::TensorView<ElementC, LayoutC> C
) {
CachedTestKey key;
// Encode conv2d operator and problem sizes
key.op = "conv2d";
std::stringstream ss_problem;
ss_problem << EncodeOperator(conv_operator) << "_";
EncodeProblemSize(ss_problem, problem);
ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta);
key.problem = ss_problem.str();
// Encode problem data types
std::stringstream ss_types;
EncodeTypes<
ElementA, LayoutA,
ElementB, LayoutB,
ElementC, LayoutC,
ElementAccumulator,
ElementCompute>(ss_types);
key.types = ss_types.str();
// Encode hash for problem data
CRC32 crc_hash;
key.A = TensorHash(A, crc_hash);
key.B = TensorHash(B, crc_hash);
key.C = TensorHash(C, crc_hash);
return key;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA, typename LayoutA,
typename ElementB, typename LayoutB,
typename ElementC, typename LayoutC,
typename ElementAccumulator,
typename ElementCompute
>
inline CachedTestKey CreateCachedConv2dWithBroadcastTestKey(
cutlass::conv::Operator conv_operator,
cutlass::conv::Conv2dProblemSize const &problem,
ElementCompute alpha,
ElementCompute beta,
cutlass::TensorView<ElementA, LayoutA> A,
cutlass::TensorView<ElementA, LayoutB> B,
cutlass::TensorView<ElementC, LayoutC> C
) {
CachedTestKey key;
// Encode conv2d operator and problem sizes
key.op = "conv2d_with_broadcast";
std::stringstream ss_problem;
ss_problem << EncodeOperator(conv_operator) << "_";
EncodeProblemSize(ss_problem, problem);
ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta);
key.problem = ss_problem.str();
// Encode problem data types
std::stringstream ss_types;
EncodeTypes<
ElementA, LayoutA,
ElementB, LayoutB,
ElementC, LayoutC,
ElementAccumulator,
ElementCompute>(ss_types);
key.types = ss_types.str();
// Encode hash for problem data
CRC32 crc_hash;
key.A = TensorHash(A, crc_hash);
key.B = TensorHash(B, crc_hash);
key.C = TensorHash(C, crc_hash);
return key;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA, typename LayoutA,
typename ElementB, typename LayoutB,
typename ElementC, typename LayoutC,
typename ElementAccumulator,
typename ElementCompute
>
inline CachedTestKey CreateCachedConv2dWithReductionTestKey(
cutlass::conv::Operator conv_operator,
cutlass::conv::Conv2dProblemSize const &problem,
ElementCompute alpha,
ElementCompute beta,
cutlass::TensorView<ElementA, LayoutA> A,
cutlass::TensorView<ElementA, LayoutB> B,
cutlass::TensorView<ElementC, LayoutC> C
) {
CachedTestKey key;
// Encode conv2d operator and problem sizes
key.op = "conv2d_with_reduction";
std::stringstream ss_problem;
ss_problem << EncodeOperator(conv_operator) << "_";
EncodeProblemSize(ss_problem, problem);
ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta);
key.problem = ss_problem.str();
// Encode problem data types
std::stringstream ss_types;
EncodeTypes<
ElementA, LayoutA,
ElementB, LayoutB,
ElementC, LayoutC,
ElementAccumulator,
ElementCompute>(ss_types);
key.types = ss_types.str();
// Encode hash for problem data
CRC32 crc_hash;
key.A = TensorHash(A, crc_hash);
key.B = TensorHash(B, crc_hash);
key.C = TensorHash(C, crc_hash);
return key;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA, typename LayoutA,
typename ElementB, typename LayoutB,
typename ElementC, typename LayoutC,
typename ElementAccumulator,
typename ElementCompute
>
inline CachedTestKey CreateCachedConv3dTestKey(
cutlass::conv::Operator conv_operator,
cutlass::conv::Conv3dProblemSize const &problem,
ElementCompute alpha,
ElementCompute beta,
cutlass::TensorView<ElementA, LayoutA> A,
cutlass::TensorView<ElementA, LayoutB> B,
cutlass::TensorView<ElementC, LayoutC> C
) {
CachedTestKey key;
// Encode conv3d operator and problem sizes
key.op = "conv3d";
std::stringstream ss_problem;
ss_problem << EncodeOperator(conv_operator) << "_";
EncodeProblemSize(ss_problem, problem);
ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta);
key.problem = ss_problem.str();
// Encode problem data types
std::stringstream ss_types;
EncodeTypes<
ElementA, LayoutA,
ElementB, LayoutB,
ElementC, LayoutC,
ElementAccumulator,
ElementCompute>(ss_types);
key.types = ss_types.str();
// Encode problem data
CRC32 crc_hash;
key.A = TensorHash(A, crc_hash);
key.B = TensorHash(B, crc_hash);
key.C = TensorHash(C, crc_hash);
return key;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
class ProblemShape,
typename ElementA,
typename ElementB,
typename ElementC,
typename ElementD
>
inline CachedTestKey CreateCachedConvNd3xTestKey(
cutlass::conv::Operator conv_operator,
ProblemShape const& problem_shape,
double alpha,
double beta,
thrust::universal_vector<ElementA> A,
thrust::universal_vector<ElementB> B,
thrust::universal_vector<ElementC> C
) {
CachedTestKey key;
// Encode convNd operator and problem sizes
std::stringstream ss_op;
ss_op << "conv" << ProblemShape::RankS << "d";
key.op = ss_op.str();
std::stringstream ss_problem;
ss_problem << EncodeOperator(conv_operator) << "_";
EncodeProblemSize(ss_problem, problem_shape);
ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta);
key.problem = ss_problem.str();
// Encode problem data types
std::stringstream ss_types;
EncodeTypes<
ElementA,
ElementB,
ElementC,
ElementD>(ss_types);
key.types = ss_types.str();
// Encode problem data
CRC32 crc_hash;
key.A = TensorHash(A, crc_hash);
key.B = TensorHash(B, crc_hash);
key.C = TensorHash(C, crc_hash);
return key;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace test::conv::device
/////////////////////////////////////////////////////////////////////////////////////////////////