371 lines
12 KiB
Plaintext
371 lines
12 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
/*! \file
|
|
\brief Unit test for the launch_on_cluster function
|
|
*/
|
|
|
|
#include "../common/cutlass_unit_test.h"
|
|
#include "cutlass/cluster_launch.hpp"
|
|
#include "cute/arch/cluster_sm90.hpp"
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
|
|
#if defined(CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED)
|
|
|
|
namespace { // (anonymous)
|
|
|
|
// Using a struct instead of a lambda makes it possible
|
|
// to name the deleter type without std::function
|
|
// (which type-erases).
|
|
struct scalar_deleter {
|
|
void operator() (float* p) {
|
|
if (p != nullptr) {
|
|
cudaFree(p);
|
|
}
|
|
}
|
|
};
|
|
|
|
using scalar_device_pointer = std::unique_ptr<float, scalar_deleter>;
|
|
|
|
// Each test needs to initialize this anew,
|
|
// from a scalar instance that is in scope during the test.
|
|
__device__ float* scalar_ptr_gpu;
|
|
|
|
// A single scalar value on device.
|
|
// The constructor allocates space on device for one value,
|
|
// copies the value to device, and sets the global pointer
|
|
// `scalar_ptr_gpu` (see above) to point to it.
|
|
// sync_to_host() copies that value back to host.
|
|
//
|
|
// This class exists only for the tests in this file.
|
|
// In order to know whether a kernel that launch_on_cluster
|
|
// claimed to launch actually got launched, each kernel
|
|
// performs a side effect: it modifies the scalar value
|
|
// through the scalar_ptr_gpu value.
|
|
// It performs a side effect through a global,
|
|
// rather than through an argument,
|
|
// so that we can test kernel launch
|
|
// with kernels that take zero parameters.
|
|
class scalar {
|
|
private:
|
|
static constexpr std::size_t num_bytes = sizeof(float);
|
|
|
|
public:
|
|
scalar(float value) : value_host_(value)
|
|
{
|
|
float* ptr_gpu_raw = nullptr;
|
|
auto err = cudaMalloc(&ptr_gpu_raw, num_bytes);
|
|
assert(err == cudaSuccess);
|
|
|
|
scalar_device_pointer ptr_gpu{ptr_gpu_raw, scalar_deleter{}};
|
|
err = cudaMemcpy(ptr_gpu.get(), &value_host_,
|
|
num_bytes, cudaMemcpyHostToDevice);
|
|
assert(err == cudaSuccess);
|
|
ptr_gpu_ = std::move(ptr_gpu);
|
|
upload_device_pointer();
|
|
}
|
|
|
|
float sync_to_host()
|
|
{
|
|
auto err = cudaMemcpy(&value_host_, ptr_gpu_.get(),
|
|
num_bytes, cudaMemcpyDeviceToHost);
|
|
assert(err == cudaSuccess);
|
|
return value_host_;
|
|
}
|
|
|
|
private:
|
|
void upload_device_pointer()
|
|
{
|
|
float* ptr_raw = ptr_gpu_.get();
|
|
auto err = cudaMemcpyToSymbol(scalar_ptr_gpu, &ptr_raw, sizeof(float*));
|
|
assert(err == cudaSuccess);
|
|
}
|
|
|
|
float value_host_ = 0.0;
|
|
scalar_device_pointer ptr_gpu_;
|
|
};
|
|
|
|
template<int cluster_x, int cluster_y, int cluster_z>
|
|
CUTE_DEVICE void check_cluster_shape() {
|
|
[[maybe_unused]] const dim3 cluster_shape = cute::cluster_shape();
|
|
assert(cluster_shape.x == cluster_x);
|
|
assert(cluster_shape.y == cluster_y);
|
|
assert(cluster_shape.z == cluster_z);
|
|
}
|
|
|
|
template<int cluster_x, int cluster_y, int cluster_z>
|
|
__global__ void kernel_0()
|
|
{
|
|
check_cluster_shape<cluster_x, cluster_y, cluster_z>();
|
|
|
|
// Write to global memory, so that we know
|
|
// whether the kernel actually ran.
|
|
const dim3 block_id = cute::block_id_in_cluster();
|
|
if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) {
|
|
*scalar_ptr_gpu = 0.1f;
|
|
}
|
|
}
|
|
|
|
template<int cluster_x, int cluster_y, int cluster_z,
|
|
int expected_p0>
|
|
__global__ void kernel_1(int p0)
|
|
{
|
|
check_cluster_shape<cluster_x, cluster_y, cluster_z>();
|
|
assert(p0 == expected_p0);
|
|
|
|
// Write to global memory, so that we know
|
|
// whether the kernel actually ran.
|
|
const dim3 block_id = cute::block_id_in_cluster();
|
|
if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) {
|
|
*scalar_ptr_gpu = 1.2f;
|
|
}
|
|
}
|
|
|
|
template<int cluster_x, int cluster_y, int cluster_z,
|
|
int expected_p0,
|
|
int expected_p2>
|
|
__global__ void kernel_2(int p0, void* p1, int p2)
|
|
{
|
|
check_cluster_shape<cluster_x, cluster_y, cluster_z>();
|
|
assert(p0 == expected_p0);
|
|
assert(p1 == nullptr);
|
|
assert(p2 == expected_p2);
|
|
|
|
// Write to global memory, so that we know
|
|
// whether the kernel actually ran.
|
|
const dim3 block_id = cute::block_id_in_cluster();
|
|
if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) {
|
|
*scalar_ptr_gpu = 2.3f;
|
|
}
|
|
}
|
|
|
|
struct OverloadedOperatorAmpersand {
|
|
struct tag_t {};
|
|
|
|
// Test that kernel launch uses the actual address,
|
|
// instead of any overloaded operator& that might exist.
|
|
CUTE_HOST_DEVICE tag_t operator& () const {
|
|
return {};
|
|
}
|
|
|
|
int x = 0;
|
|
int y = 0;
|
|
int z = 0;
|
|
int w = 0;
|
|
};
|
|
|
|
static_assert(sizeof(OverloadedOperatorAmpersand) == 4 * sizeof(int));
|
|
|
|
template<int cluster_x, int cluster_y, int cluster_z,
|
|
int expected_p0,
|
|
int expected_p1_x,
|
|
int expected_p1_y,
|
|
int expected_p1_z,
|
|
int expected_p1_w,
|
|
std::uint64_t expected_p2>
|
|
__global__ void kernel_3(int p0, OverloadedOperatorAmpersand p1, std::uint64_t p2)
|
|
{
|
|
check_cluster_shape<cluster_x, cluster_y, cluster_z>();
|
|
assert(p0 == expected_p0);
|
|
assert(p1.x == expected_p1_x);
|
|
assert(p1.y == expected_p1_y);
|
|
assert(p1.z == expected_p1_z);
|
|
assert(p1.w == expected_p1_w);
|
|
assert(p2 == expected_p2);
|
|
|
|
// Write to global memory, so that we know
|
|
// whether the kernel actually ran.
|
|
const dim3 block_id = cute::block_id_in_cluster();
|
|
if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) {
|
|
*scalar_ptr_gpu = 3.4f;
|
|
}
|
|
}
|
|
|
|
} // namespace (anonymous)
|
|
|
|
TEST(SM90_ClusterLaunch, Kernel_0)
|
|
{
|
|
scalar global_value(-1.0f);
|
|
|
|
const dim3 grid_dims{2, 1, 1};
|
|
const dim3 block_dims{1, 1, 1};
|
|
const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1};
|
|
const int smem_size_in_bytes = 0;
|
|
cutlass::ClusterLaunchParams params{
|
|
grid_dims, block_dims, cluster_dims, smem_size_in_bytes};
|
|
|
|
void const* kernel_ptr = reinterpret_cast<void const*>(&kernel_0<2, 1, 1>);
|
|
cutlass::Status status = cutlass::launch_kernel_on_cluster(params,
|
|
kernel_ptr);
|
|
ASSERT_EQ(status, cutlass::Status::kSuccess);
|
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
if (result == cudaSuccess) {
|
|
CUTLASS_TRACE_HOST("Kernel launch succeeded\n");
|
|
}
|
|
else {
|
|
CUTLASS_TRACE_HOST("Kernel launch FAILED\n");
|
|
cudaError_t error = cudaGetLastError();
|
|
EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: "
|
|
<< cudaGetErrorString(error) << "\n";
|
|
}
|
|
|
|
ASSERT_EQ(global_value.sync_to_host(), 0.1f);
|
|
}
|
|
|
|
TEST(SM90_ClusterLaunch, Kernel_1)
|
|
{
|
|
scalar global_value(-1.0f);
|
|
|
|
const dim3 grid_dims{2, 1, 1};
|
|
const dim3 block_dims{1, 1, 1};
|
|
const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1};
|
|
const int smem_size_in_bytes = 0;
|
|
cutlass::ClusterLaunchParams params{
|
|
grid_dims, block_dims, cluster_dims, smem_size_in_bytes};
|
|
|
|
constexpr int expected_p0 = 42;
|
|
void const* kernel_ptr = reinterpret_cast<void const*>(&kernel_1<2, 1, 1, expected_p0>);
|
|
const int p0 = expected_p0;
|
|
cutlass::Status status = cutlass::launch_kernel_on_cluster(params,
|
|
kernel_ptr, p0);
|
|
ASSERT_EQ(status, cutlass::Status::kSuccess);
|
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
if (result == cudaSuccess) {
|
|
#if (CUTLASS_DEBUG_TRACE_LEVEL > 1)
|
|
CUTLASS_TRACE_HOST("Kernel launch succeeded\n");
|
|
#endif
|
|
}
|
|
else {
|
|
CUTLASS_TRACE_HOST("Kernel launch FAILED\n");
|
|
cudaError_t error = cudaGetLastError();
|
|
EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: "
|
|
<< cudaGetErrorString(error) << "\n";
|
|
}
|
|
|
|
ASSERT_EQ(global_value.sync_to_host(), 1.2f);
|
|
}
|
|
|
|
TEST(SM90_ClusterLaunch, Kernel_2)
|
|
{
|
|
scalar global_value(-1.0f);
|
|
|
|
const dim3 grid_dims{2, 1, 1};
|
|
const dim3 block_dims{1, 1, 1};
|
|
const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1};
|
|
const int smem_size_in_bytes = 0;
|
|
cutlass::ClusterLaunchParams params{
|
|
grid_dims, block_dims, cluster_dims, smem_size_in_bytes};
|
|
|
|
constexpr int expected_p0 = 42;
|
|
constexpr int expected_p2 = 43;
|
|
|
|
int p0 = expected_p0;
|
|
int* p1 = nullptr;
|
|
int p2 = expected_p2;
|
|
|
|
void const* kernel_ptr = reinterpret_cast<void const*>(
|
|
&kernel_2<2, 1, 1, expected_p0, expected_p2>);
|
|
cutlass::Status status = cutlass::launch_kernel_on_cluster(params,
|
|
kernel_ptr, p0, p1, p2);
|
|
ASSERT_EQ(status, cutlass::Status::kSuccess);
|
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
if (result == cudaSuccess) {
|
|
#if (CUTLASS_DEBUG_TRACE_LEVEL > 1)
|
|
CUTLASS_TRACE_HOST("Kernel launch succeeded\n");
|
|
#endif
|
|
}
|
|
else {
|
|
CUTLASS_TRACE_HOST("Kernel launch FAILED\n");
|
|
cudaError_t error = cudaGetLastError();
|
|
EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: "
|
|
<< cudaGetErrorString(error) << "\n";
|
|
}
|
|
|
|
ASSERT_EQ(global_value.sync_to_host(), 2.3f);
|
|
}
|
|
|
|
TEST(SM90_ClusterLaunch, Kernel_3)
|
|
{
|
|
scalar global_value(-1.0f);
|
|
|
|
const dim3 grid_dims{2, 1, 1};
|
|
const dim3 block_dims{1, 1, 1};
|
|
const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1};
|
|
const int smem_size_in_bytes = 0;
|
|
cutlass::ClusterLaunchParams params{
|
|
grid_dims, block_dims, cluster_dims, smem_size_in_bytes};
|
|
|
|
constexpr int expected_p0 = 42;
|
|
constexpr int expected_p1_x = 1;
|
|
constexpr int expected_p1_y = 2;
|
|
constexpr int expected_p1_z = 3;
|
|
constexpr int expected_p1_w = 4;
|
|
constexpr std::uint64_t expected_p2 = 1'000'000'000'000uLL;
|
|
|
|
int p0 = expected_p0;
|
|
OverloadedOperatorAmpersand p1{expected_p1_x,
|
|
expected_p1_y, expected_p1_z, expected_p1_w};
|
|
// Verify that operator& is overloaded for this type.
|
|
static_assert(! std::is_same_v<decltype(&p1),
|
|
OverloadedOperatorAmpersand*>);
|
|
std::uint64_t p2 = expected_p2;
|
|
|
|
void const* kernel_ptr = reinterpret_cast<void const*>(
|
|
&kernel_3<2, 1, 1, expected_p0, expected_p1_x,
|
|
expected_p1_y, expected_p1_z, expected_p1_w,
|
|
expected_p2>);
|
|
cutlass::Status status = cutlass::launch_kernel_on_cluster(params,
|
|
kernel_ptr, p0, p1, p2);
|
|
ASSERT_EQ(status, cutlass::Status::kSuccess);
|
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
if (result == cudaSuccess) {
|
|
#if (CUTLASS_DEBUG_TRACE_LEVEL > 1)
|
|
CUTLASS_TRACE_HOST("Kernel launch succeeded\n");
|
|
#endif
|
|
}
|
|
else {
|
|
CUTLASS_TRACE_HOST("Kernel launch FAILED\n");
|
|
cudaError_t error = cudaGetLastError();
|
|
EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: "
|
|
<< cudaGetErrorString(error) << "\n";
|
|
}
|
|
|
|
ASSERT_EQ(global_value.sync_to_host(), 3.4f);
|
|
}
|
|
|
|
#endif // CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED
|