cutlass/python/pycute/int_tuple.py

231 lines
7.6 KiB
Python

#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Functions for manipulating IntTuples
"""
from functools import reduce
from itertools import chain
from typing import Union
from .typing import Integer
def is_int(x):
return isinstance(x, Integer)
def is_tuple(x):
return isinstance(x, tuple)
def flatten(t):
if is_tuple(t):
if len(t) == 0:
return ()
else:
return tuple(i for a in t for i in flatten(a))
else:
return (t,)
def signum(a):
return bool(a > 0) - bool(a < 0)
def product(a):
if is_tuple(a):
return reduce(lambda val,elem : val*product(elem), a, 1)
else:
return a
def inner_product(a, b):
if is_tuple(a): # tuple tuple
assert len(a) == len(b)
return sum(inner_product(x,y) for x,y in zip(a,b))
else: # "int" "int"
assert not is_tuple(b)
return a * b
def tuple_max(a):
if is_tuple(a):
return max(tuple_max(x) for x in a)
else:
return a
def elem_scale(a, b):
if is_tuple(a):
if is_tuple(b): # tuple tuple
assert len(a) == len(b)
return tuple(elem_scale(x,y) for x,y in zip(a,b))
else: # tuple "int"
assert False # Error
else:
if is_tuple(b): # "int" tuple
return elem_scale(a, product(b))
else: # "int" "int"
return a * b
# Inclusive prefix ceil div with output congruent to input a
def shape_div(a, b):
if is_tuple(a):
if is_tuple(b): # tuple tuple
assert len(a) == len(b)
return tuple(shape_div(x,y) for x,y in zip(a,b))
else: # tuple "int"
#r = [shape_div(a[0],b)] + [shape_div(a[i],b := shape_div(b, product(a[i-1]))) for i in range(1,len(a))]
r = []
for v in a:
r.append(shape_div(v,b))
b = shape_div(b,product(v))
return tuple(r)
else:
if is_tuple(b): # "int" tuple
return shape_div(a, product(b))
else: # "int" "int"
assert a % b == 0 or b % a == 0
#return -(-a // b) # Python exclusive impl: "//" is always floor div
if a % b == 0:
return a // b
else:
return signum(a*b)
# Exclusive prefix product with output congruent to input a
def prefix_product(a, init=1):
if is_tuple(a):
if is_tuple(init): # tuple tuple
assert len(a) == len(init)
return tuple(prefix_product(x,i) for x,i in zip(a,init))
else: # tuple "int"
#r = [prefix_product(a[0],init)] + [prefix_product(a[i],init := init * product(a[i-1])) for i in range(1,len(a))]
r = []
for v in a:
r.append(prefix_product(v,init))
init = init * product(v)
return tuple(r)
else:
if is_tuple(init): # "int" tuple
assert False # Error
else: # "int" "int"
return init
def idx2crd(idx, shape, stride=None):
if stride is None:
stride = prefix_product(shape)
if is_tuple(idx):
if is_tuple(shape): # tuple tuple tuple
assert len(idx) == len(shape) and len(idx) == len(stride)
return tuple(idx2crd(i, s, d) for i, s, d in zip(idx,shape,stride))
else: # tuple "int" "int"
assert False # Error
else:
if is_tuple(shape): # "int" tuple tuple
assert len(shape) == len(stride)
return tuple(idx2crd(idx, s, d) for s,d in zip(shape,stride))
else: # "int" "int" "int"
return (idx // stride) % shape
def crd2idx(crd, shape, stride=None):
if stride is None:
stride = prefix_product(shape)
if is_tuple(crd):
if is_tuple(shape): # tuple tuple tuple
assert len(crd) == len(shape) and len(crd) == len(stride)
return sum(crd2idx(c, s, d) for c, s, d in zip(crd, shape, stride))
else: # tuple "int" "int"
assert False, f"crd={crd}, shape={shape}" # Error
else:
if crd is None:
crd = 0
if is_tuple(shape): # "int" tuple tuple
assert len(shape) == len(stride)
result = 0
for i in range(len(shape)-1):
result += crd2idx(crd % product(shape[i]), shape[i], stride[i])
crd = crd // product(shape[i])
return result + crd2idx(crd, shape[-1], stride[-1])
else: # "int" "int" "int"
return crd * stride
# Transform crd into the dst_shape's iteration space
def crd2crd(crd, dst_shape, src_shape=None):
if is_tuple(crd):
if is_tuple(dst_shape): # tuple tuple
assert len(crd) == len(dst_shape)
return tuple(crd2crd(x, y) for x, y in zip(crd,dst_shape))
else: # tuple "int"
# Ambiguous unless we have src_shape
assert src_shape is not None
return crd2idx(crd, src_shape)
else:
if is_tuple(dst_shape): # "int" tuple
return idx2crd(crd, dst_shape)
else: # "int" "int"
assert crd < dst_shape
return crd
# Filter trg according to crd: keep only elements of trg that are paired with None
def slice_(crd: Union[None, tuple, int],
trg: Union[tuple, int]):
if is_tuple(crd):
if is_tuple(trg): # tuple tuple
assert len(crd) == len(trg)
# match C++ behavior of `filter_tuple` using `tuple_cat(...)`
return tuple(chain(*filter(lambda x: x != (), [slice_(c, s) for c, s in zip(crd, trg)])))
else:
assert False # tuple "int" : Error
elif crd is None:
# match C++ behavior `return cute::tuple<B>{b};`
return (trg,)
else:
return ()
# Determine if None appears at any of an int_tuples' terminals
def has_none(a: Union[None, tuple, int]):
if is_tuple(a):
return any(has_none(v) for v in a)
else:
return a is None