1041 lines
34 KiB
Python
1041 lines
34 KiB
Python
#################################################################################################
|
|
#
|
|
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
#################################################################################################
|
|
|
|
"""
|
|
Data types and tags used for emitting CUTLASS C++ kernels
|
|
"""
|
|
|
|
import enum
|
|
import re
|
|
|
|
# The following block implements enum.auto() for Python 3.5 variants that don't include it such
|
|
# as the default 3.5.2 on Ubuntu 16.04.
|
|
#
|
|
# https://codereview.stackexchange.com/questions/177309/reimplementing-pythons-enum-auto-for-compatibility
|
|
|
|
try:
|
|
from enum import auto as enum_auto
|
|
except ImportError:
|
|
__cutlass_library_auto_enum = 0
|
|
def enum_auto() -> int:
|
|
global __cutlass_library_auto_enum
|
|
i = __cutlass_library_auto_enum
|
|
__cutlass_library_auto_enum += 1
|
|
return i
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class GeneratorTarget(enum.Enum):
|
|
Library = enum_auto()
|
|
#
|
|
GeneratorTargetNames = {
|
|
GeneratorTarget.Library: 'library'
|
|
}
|
|
#
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class DataType(enum.Enum):
|
|
void = enum_auto() # primarily used to disable C tensor for epilogues
|
|
b1 = enum_auto()
|
|
u4 = enum_auto()
|
|
u8 = enum_auto()
|
|
u16 = enum_auto()
|
|
u32 = enum_auto()
|
|
u64 = enum_auto()
|
|
s4 = enum_auto()
|
|
s8 = enum_auto()
|
|
s16 = enum_auto()
|
|
s32 = enum_auto()
|
|
s64 = enum_auto()
|
|
e4m3 = enum_auto()
|
|
e5m2 = enum_auto()
|
|
f16 = enum_auto()
|
|
bf16 = enum_auto()
|
|
f32 = enum_auto()
|
|
tf32 = enum_auto()
|
|
f64 = enum_auto()
|
|
cf16 = enum_auto()
|
|
cbf16 = enum_auto()
|
|
cf32 = enum_auto()
|
|
ctf32 = enum_auto()
|
|
cf64 = enum_auto()
|
|
cs4 = enum_auto()
|
|
cs8 = enum_auto()
|
|
cs16 = enum_auto()
|
|
cs32 = enum_auto()
|
|
cs64 = enum_auto()
|
|
cu4 = enum_auto()
|
|
cu8 = enum_auto()
|
|
cu16 = enum_auto()
|
|
cu32 = enum_auto()
|
|
cu64 = enum_auto()
|
|
invalid = enum_auto()
|
|
|
|
#
|
|
ShortDataTypeNames = {
|
|
DataType.s32: 'i',
|
|
DataType.e4m3: 'e4m3',
|
|
DataType.e5m2: 'e5m2',
|
|
DataType.f16: 'h',
|
|
DataType.f32: 's',
|
|
DataType.f64: 'd',
|
|
DataType.cf32: 'c',
|
|
DataType.cf64: 'z',
|
|
}
|
|
|
|
#
|
|
DataTypeNames = {
|
|
DataType.void: "void",
|
|
DataType.b1: "b1",
|
|
DataType.u4: "u4",
|
|
DataType.u8: "u8",
|
|
DataType.u16: "u16",
|
|
DataType.u32: "u32",
|
|
DataType.u64: "u64",
|
|
DataType.s4: "s4",
|
|
DataType.s8: "s8",
|
|
DataType.s16: "s16",
|
|
DataType.s32: "s32",
|
|
DataType.s64: "s64",
|
|
DataType.e4m3: 'e4m3',
|
|
DataType.e5m2: 'e5m2',
|
|
DataType.f16: "f16",
|
|
DataType.bf16: "bf16",
|
|
DataType.f32: "f32",
|
|
DataType.tf32: "tf32",
|
|
DataType.f64: "f64",
|
|
DataType.cf16: "cf16",
|
|
DataType.cbf16: "cbf16",
|
|
DataType.cf32: "cf32",
|
|
DataType.ctf32: "ctf32",
|
|
DataType.cf64: "cf64",
|
|
DataType.cu4: "cu4",
|
|
DataType.cu8: "cu8",
|
|
DataType.cu16: "cu16",
|
|
DataType.cu32: "cu32",
|
|
DataType.cu64: "cu64",
|
|
DataType.cs4: "cs4",
|
|
DataType.cs8: "cs8",
|
|
DataType.cs16: "cs16",
|
|
DataType.cs32: "cs32",
|
|
DataType.cs64: "cs64",
|
|
}
|
|
|
|
DataTypeTag = {
|
|
DataType.void: "void",
|
|
DataType.b1: "cutlass::uint1b_t",
|
|
DataType.u4: "cutlass::uint4b_t",
|
|
DataType.u8: "uint8_t",
|
|
DataType.u16: "uint16_t",
|
|
DataType.u32: "uint32_t",
|
|
DataType.u64: "uint64_t",
|
|
DataType.s4: "cutlass::int4b_t",
|
|
DataType.s8: "int8_t",
|
|
DataType.s16: "int16_t",
|
|
DataType.s32: "int32_t",
|
|
DataType.s64: "int64_t",
|
|
DataType.e4m3: 'cutlass::float_e4m3_t',
|
|
DataType.e5m2: 'cutlass::float_e5m2_t',
|
|
DataType.f16: "cutlass::half_t",
|
|
DataType.bf16: "cutlass::bfloat16_t",
|
|
DataType.f32: "float",
|
|
DataType.tf32: "cutlass::tfloat32_t",
|
|
DataType.f64: "double",
|
|
DataType.cf16: "cutlass::complex<cutlass::half_t>",
|
|
DataType.cbf16: "cutlass::complex<cutlass::bfloat16_t>",
|
|
DataType.cf32: "cutlass::complex<float>",
|
|
DataType.ctf32: "cutlass::complex<cutlass::tfloat32_t>",
|
|
DataType.cf64: "cutlass::complex<double>",
|
|
DataType.cu4: "cutlass::complex<cutlass::uint4b_t>",
|
|
DataType.cu8: "cutlass::complex<cutlass::uint8_t>",
|
|
DataType.cu16: "cutlass::complex<cutlass::uint16_t>",
|
|
DataType.cu32: "cutlass::complex<cutlass::uint32_t>",
|
|
DataType.cu64: "cutlass::complex<cutlass::uint64_t>",
|
|
DataType.cs4: "cutlass::complex<cutlass::int4b_t>",
|
|
DataType.cs8: "cutlass::complex<cutlass::int8_t>",
|
|
DataType.cs16: "cutlass::complex<cutlass::int16_t>",
|
|
DataType.cs32: "cutlass::complex<cutlass::int32_t>",
|
|
DataType.cs64: "cutlass::complex<cutlass::int64_t>",
|
|
}
|
|
|
|
DataTypeSize = {
|
|
DataType.void: 0,
|
|
DataType.b1: 1,
|
|
DataType.u4: 4,
|
|
DataType.u8: 8,
|
|
DataType.u16: 16,
|
|
DataType.u32: 32,
|
|
DataType.u64: 64,
|
|
DataType.s4: 4,
|
|
DataType.s8: 8,
|
|
DataType.s16: 16,
|
|
DataType.s32: 32,
|
|
DataType.s64: 64,
|
|
DataType.e4m3: 8,
|
|
DataType.e5m2: 8,
|
|
DataType.f16: 16,
|
|
DataType.bf16: 16,
|
|
DataType.f32: 32,
|
|
DataType.tf32: 32,
|
|
DataType.f64: 64,
|
|
DataType.cf16: 32,
|
|
DataType.cbf16: 32,
|
|
DataType.cf32: 64,
|
|
DataType.ctf32: 32,
|
|
DataType.cf64: 128,
|
|
DataType.cu4: 8,
|
|
DataType.cu8: 16,
|
|
DataType.cu16: 32,
|
|
DataType.cu32: 64,
|
|
DataType.cu64: 128,
|
|
DataType.cs4: 8,
|
|
DataType.cs8: 16,
|
|
DataType.cs16: 32,
|
|
DataType.cs32: 64,
|
|
DataType.cs64: 128,
|
|
}
|
|
|
|
###################################################################################################
|
|
#
|
|
class BlasMode(enum.Enum):
|
|
symmetric = enum_auto()
|
|
hermitian = enum_auto()
|
|
|
|
#
|
|
BlasModeTag = {
|
|
BlasMode.symmetric: 'cutlass::BlasMode::kSymmetric',
|
|
BlasMode.hermitian: 'cutlass::BlasMode::kHermitian',
|
|
}
|
|
|
|
#
|
|
class ComplexTransform(enum.Enum):
|
|
none = enum_auto()
|
|
conj = enum_auto()
|
|
|
|
#
|
|
ComplexTransformTag = {
|
|
ComplexTransform.none: 'cutlass::ComplexTransform::kNone',
|
|
ComplexTransform.conj: 'cutlass::ComplexTransform::kConjugate',
|
|
}
|
|
|
|
# Used for cutlass3x complex kernel collective mainloop builder instantiation
|
|
ComplexTransformTag3x = {
|
|
ComplexTransform.none: 'cute::identity',
|
|
ComplexTransform.conj: 'cute::conjugate',
|
|
}
|
|
|
|
#
|
|
RealComplexBijection = [
|
|
(DataType.f16, DataType.cf16),
|
|
(DataType.f32, DataType.cf32),
|
|
(DataType.f64, DataType.cf64),
|
|
]
|
|
|
|
#
|
|
def is_complex(data_type):
|
|
for r, c in RealComplexBijection:
|
|
if data_type == c:
|
|
return True
|
|
return False
|
|
|
|
#
|
|
def get_complex_from_real(real_type):
|
|
for r, c in RealComplexBijection:
|
|
if real_type == r:
|
|
return c
|
|
return DataType.invalid
|
|
|
|
#
|
|
def get_real_from_complex(complex_type):
|
|
for r, c in RealComplexBijection:
|
|
if complex_type == c:
|
|
return r
|
|
return DataType.invalid
|
|
|
|
#
|
|
class ComplexMultiplyOp(enum.Enum):
|
|
multiply_add = enum_auto()
|
|
gaussian = enum_auto()
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class MathOperation(enum.Enum):
|
|
multiply_add = enum_auto()
|
|
multiply_add_saturate = enum_auto()
|
|
multiply_add_mixed_input_upcast = enum_auto()
|
|
xor_popc = enum_auto()
|
|
and_popc = enum_auto()
|
|
multiply_add_fast_bf16 = enum_auto()
|
|
multiply_add_fast_f16 = enum_auto()
|
|
multiply_add_fast_f32 = enum_auto()
|
|
multiply_add_complex_fast_f32 = enum_auto()
|
|
multiply_add_complex = enum_auto()
|
|
multiply_add_complex_gaussian = enum_auto()
|
|
multiply_add_fast_accum = enum_auto()
|
|
|
|
#
|
|
MathOperationTag = {
|
|
MathOperation.multiply_add: 'cutlass::arch::OpMultiplyAdd',
|
|
MathOperation.multiply_add_saturate: 'cutlass::arch::OpMultiplyAddSaturate',
|
|
MathOperation.multiply_add_mixed_input_upcast: 'cutlass::arch::OpMultiplyAddMixedInputUpcast',
|
|
MathOperation.xor_popc: 'cutlass::arch::OpXorPopc',
|
|
MathOperation.and_popc: 'cutlass::arch::OpAndPopc',
|
|
MathOperation.multiply_add_fast_bf16: 'cutlass::arch::OpMultiplyAddFastBF16',
|
|
MathOperation.multiply_add_fast_f16: 'cutlass::arch::OpMultiplyAddFastF16',
|
|
MathOperation.multiply_add_fast_f32: 'cutlass::arch::OpMultiplyAddFastF32',
|
|
MathOperation.multiply_add_complex_fast_f32: 'cutlass::arch::OpMultiplyAddComplexFastF32',
|
|
MathOperation.multiply_add_complex: 'cutlass::arch::OpMultiplyAddComplex',
|
|
MathOperation.multiply_add_complex_gaussian: 'cutlass::arch::OpMultiplyAddGaussianComplex',
|
|
MathOperation.multiply_add_fast_accum: 'cutlass::arch::OpMultiplyAddFastAccum',
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class LayoutType(enum.Enum):
|
|
ColumnMajor = enum_auto()
|
|
RowMajor = enum_auto()
|
|
ColumnMajorInterleaved2 = enum_auto()
|
|
RowMajorInterleaved2 = enum_auto()
|
|
ColumnMajorInterleaved32 = enum_auto()
|
|
RowMajorInterleaved32 = enum_auto()
|
|
ColumnMajorInterleaved64 = enum_auto()
|
|
RowMajorInterleaved64 = enum_auto()
|
|
TensorNWC = enum_auto()
|
|
TensorNHWC = enum_auto()
|
|
TensorNDHWC = enum_auto()
|
|
TensorNCHW = enum_auto()
|
|
TensorNGHWC = enum_auto()
|
|
TensorNC32HW32 = enum_auto()
|
|
TensorNC64HW64 = enum_auto()
|
|
TensorC32RSK32 = enum_auto()
|
|
TensorC64RSK64 = enum_auto()
|
|
TensorKCS = enum_auto()
|
|
TensorKCSR = enum_auto()
|
|
TensorKCSRT = enum_auto()
|
|
|
|
#
|
|
LayoutTag = {
|
|
LayoutType.ColumnMajor: 'cutlass::layout::ColumnMajor',
|
|
LayoutType.RowMajor: 'cutlass::layout::RowMajor',
|
|
LayoutType.ColumnMajorInterleaved2: 'cutlass::layout::ColumnMajorInterleaved<2>',
|
|
LayoutType.RowMajorInterleaved2: 'cutlass::layout::RowMajorInterleaved<2>',
|
|
LayoutType.ColumnMajorInterleaved32: 'cutlass::layout::ColumnMajorInterleaved<32>',
|
|
LayoutType.RowMajorInterleaved32: 'cutlass::layout::RowMajorInterleaved<32>',
|
|
LayoutType.ColumnMajorInterleaved64: 'cutlass::layout::ColumnMajorInterleaved<64>',
|
|
LayoutType.RowMajorInterleaved64: 'cutlass::layout::RowMajorInterleaved<64>',
|
|
LayoutType.TensorNWC: 'cutlass::layout::TensorNWC',
|
|
LayoutType.TensorNHWC: 'cutlass::layout::TensorNHWC',
|
|
LayoutType.TensorNDHWC: 'cutlass::layout::TensorNDHWC',
|
|
LayoutType.TensorNCHW: 'cutlass::layout::TensorNCHW',
|
|
LayoutType.TensorNGHWC: 'cutlass::layout::TensorNGHWC',
|
|
LayoutType.TensorNC32HW32: 'cutlass::layout::TensorNCxHWx<32>',
|
|
LayoutType.TensorC32RSK32: 'cutlass::layout::TensorCxRSKx<32>',
|
|
LayoutType.TensorNC64HW64: 'cutlass::layout::TensorNCxHWx<64>',
|
|
LayoutType.TensorC64RSK64: 'cutlass::layout::TensorCxRSKx<64>',
|
|
LayoutType.TensorKCS: 'cutlass::layout::TensorKCS',
|
|
LayoutType.TensorKCSR: 'cutlass::layout::TensorKCSR',
|
|
LayoutType.TensorKCSRT: 'cutlass::layout::TensorKCSRT'
|
|
}
|
|
|
|
#
|
|
TransposedLayout = {
|
|
LayoutType.ColumnMajor: LayoutType.RowMajor,
|
|
LayoutType.RowMajor: LayoutType.ColumnMajor,
|
|
LayoutType.ColumnMajorInterleaved2: LayoutType.RowMajorInterleaved2,
|
|
LayoutType.RowMajorInterleaved2: LayoutType.ColumnMajorInterleaved2,
|
|
LayoutType.ColumnMajorInterleaved32: LayoutType.RowMajorInterleaved32,
|
|
LayoutType.RowMajorInterleaved32: LayoutType.ColumnMajorInterleaved32,
|
|
LayoutType.ColumnMajorInterleaved64: LayoutType.RowMajorInterleaved64,
|
|
LayoutType.RowMajorInterleaved64: LayoutType.ColumnMajorInterleaved64,
|
|
LayoutType.TensorNHWC: LayoutType.TensorNHWC
|
|
}
|
|
|
|
#
|
|
ShortLayoutTypeNames = {
|
|
LayoutType.ColumnMajor: 'n',
|
|
LayoutType.ColumnMajorInterleaved2: 'n2',
|
|
LayoutType.ColumnMajorInterleaved32: 'n32',
|
|
LayoutType.ColumnMajorInterleaved64: 'n64',
|
|
LayoutType.RowMajor: 't',
|
|
LayoutType.RowMajorInterleaved2: 't2',
|
|
LayoutType.RowMajorInterleaved32: 't32',
|
|
LayoutType.RowMajorInterleaved64: 't64',
|
|
LayoutType.TensorNWC: 'nwc',
|
|
LayoutType.TensorNHWC: 'nhwc',
|
|
LayoutType.TensorNDHWC: 'ndhwc',
|
|
LayoutType.TensorNCHW: 'nchw',
|
|
LayoutType.TensorNGHWC: 'nghwc',
|
|
LayoutType.TensorNC32HW32: 'nc32hw32',
|
|
LayoutType.TensorNC64HW64: 'nc64hw64',
|
|
LayoutType.TensorC32RSK32: 'c32rsk32',
|
|
LayoutType.TensorC64RSK64: 'c64rsk64',
|
|
LayoutType.TensorKCS: 'kcs',
|
|
LayoutType.TensorKCSR: 'kcsr',
|
|
LayoutType.TensorKCSRT: 'kcsrt'
|
|
}
|
|
|
|
#
|
|
ShortComplexLayoutNames = {
|
|
(LayoutType.ColumnMajor, ComplexTransform.none): 'n',
|
|
(LayoutType.ColumnMajor, ComplexTransform.conj): 'c',
|
|
(LayoutType.RowMajor, ComplexTransform.none): 't',
|
|
(LayoutType.RowMajor, ComplexTransform.conj): 'h'
|
|
}
|
|
|
|
###################################################################################################
|
|
class KernelScheduleType(enum.Enum):
|
|
ScheduleAuto = enum_auto()
|
|
Multistage = enum_auto()
|
|
CpAsyncWarpSpecialized = enum_auto()
|
|
CpAsyncWarpSpecializedPingpong = enum_auto()
|
|
CpAsyncWarpSpecializedCooperative = enum_auto()
|
|
Tma = enum_auto()
|
|
TmaWarpSpecialized = enum_auto()
|
|
TmaWarpSpecializedPingpong = enum_auto()
|
|
TmaWarpSpecializedCooperative = enum_auto()
|
|
TmaWarpSpecializedFP8FastAccum = enum_auto()
|
|
TmaWarpSpecializedCooperativeFP8FastAccum = enum_auto()
|
|
TmaWarpSpecializedPingpongFP8FastAccum = enum_auto()
|
|
ImplicitTmaWarpSpecializedSm90 = enum_auto()
|
|
#
|
|
KernelScheduleTag = {
|
|
KernelScheduleType.ScheduleAuto: 'cutlass::gemm::collective::KernelScheduleAuto',
|
|
KernelScheduleType.Multistage: 'cutlass::gemm::KernelMultistage',
|
|
KernelScheduleType.CpAsyncWarpSpecialized: 'cutlass::gemm::KernelCpAsyncWarpSpecialized',
|
|
KernelScheduleType.CpAsyncWarpSpecializedPingpong: 'cutlass::gemm::KernelCpAsyncWarpSpecializedPingpong',
|
|
KernelScheduleType.CpAsyncWarpSpecializedCooperative: 'cutlass::gemm::KernelCpAsyncWarpSpecializedCooperative',
|
|
KernelScheduleType.Tma: 'cutlass::gemm::KernelTma',
|
|
KernelScheduleType.TmaWarpSpecialized: 'cutlass::gemm::KernelTmaWarpSpecialized',
|
|
KernelScheduleType.TmaWarpSpecializedPingpong: 'cutlass::gemm::KernelTmaWarpSpecializedPingpong',
|
|
KernelScheduleType.TmaWarpSpecializedCooperative: 'cutlass::gemm::KernelTmaWarpSpecializedCooperative',
|
|
KernelScheduleType.TmaWarpSpecializedFP8FastAccum: 'cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum',
|
|
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum: 'cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum',
|
|
KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum: 'cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum',
|
|
KernelScheduleType.ImplicitTmaWarpSpecializedSm90: 'cutlass::conv::KernelImplicitTmaWarpSpecializedSm90',
|
|
}
|
|
|
|
#
|
|
KernelScheduleSuffixes = {
|
|
KernelScheduleType.ScheduleAuto: '',
|
|
KernelScheduleType.Multistage: '_cpasync',
|
|
KernelScheduleType.CpAsyncWarpSpecialized: '_cpasync_warpspecialized',
|
|
KernelScheduleType.CpAsyncWarpSpecializedPingpong: '_cpasync_warpspecialized_pingpong',
|
|
KernelScheduleType.CpAsyncWarpSpecializedCooperative: '_cpasync_warpspecialized_cooperative',
|
|
KernelScheduleType.Tma: '_unspecialized',
|
|
KernelScheduleType.TmaWarpSpecialized: '_warpspecialized',
|
|
KernelScheduleType.TmaWarpSpecializedPingpong: '_warpspecialized_pingpong',
|
|
KernelScheduleType.TmaWarpSpecializedCooperative: '_warpspecialized_cooperative',
|
|
KernelScheduleType.TmaWarpSpecializedFP8FastAccum: '_warpspecialized_fp8_fastaccum',
|
|
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum: '_warpspecialized_cooperative_fp8_fastaccum',
|
|
KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum: '_warpspecialized_pingpong_fp8_fastaccum',
|
|
KernelScheduleType.ImplicitTmaWarpSpecializedSm90: '_warpspecialized',
|
|
}
|
|
|
|
class EpilogueScheduleType(enum.Enum):
|
|
ScheduleAuto = enum_auto()
|
|
EpilogueTransposed = enum_auto()
|
|
NoSmemWarpSpecialized = enum_auto()
|
|
TmaWarpSpecialized = enum_auto()
|
|
TmaWarpSpecializedCooperative = enum_auto()
|
|
#
|
|
EpilogueScheduleTag = {
|
|
EpilogueScheduleType.ScheduleAuto: 'cutlass::epilogue::collective::EpilogueScheduleAuto',
|
|
EpilogueScheduleType.EpilogueTransposed: 'cutlass::gemm::EpilogueTransposed',
|
|
EpilogueScheduleType.NoSmemWarpSpecialized: 'cutlass::epilogue::NoSmemWarpSpecialized',
|
|
EpilogueScheduleType.TmaWarpSpecialized: 'cutlass::epilogue::TmaWarpSpecialized',
|
|
EpilogueScheduleType.TmaWarpSpecializedCooperative: 'cutlass::epilogue::TmaWarpSpecializedCooperative',
|
|
}
|
|
|
|
#
|
|
EpilogueScheduleSuffixes = {
|
|
EpilogueScheduleType.ScheduleAuto: '',
|
|
EpilogueScheduleType.EpilogueTransposed: '',
|
|
EpilogueScheduleType.NoSmemWarpSpecialized: '_epi_nosmem',
|
|
EpilogueScheduleType.TmaWarpSpecialized: '_epi_tma',
|
|
EpilogueScheduleType.TmaWarpSpecializedCooperative: '_epi_tma',
|
|
}
|
|
|
|
class EpilogueFunctor3x(enum.Enum):
|
|
LinearCombination = enum_auto()
|
|
#
|
|
EpilogueFunctor3xTag = {
|
|
EpilogueFunctor3x.LinearCombination: 'cutlass::epilogue::fusion::LinearCombination',
|
|
}
|
|
|
|
class TileSchedulerType(enum.Enum):
|
|
Default = enum_auto()
|
|
Persistent = enum_auto()
|
|
StreamK = enum_auto()
|
|
#
|
|
TileSchedulerTag = {
|
|
TileSchedulerType.Default: 'void',
|
|
TileSchedulerType.Persistent: 'cutlass::gemm::PersistentScheduler',
|
|
TileSchedulerType.StreamK: 'cutlass::gemm::StreamKScheduler',
|
|
}
|
|
|
|
#
|
|
TileSchedulerSuffixes = {
|
|
TileSchedulerType.Default: '',
|
|
TileSchedulerType.Persistent: '',
|
|
TileSchedulerType.StreamK: '_stream_k',
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class SideMode(enum.Enum):
|
|
Left = enum_auto()
|
|
Right = enum_auto()
|
|
|
|
#
|
|
SideModeTag = {
|
|
SideMode.Left: 'cutlass::SideMode::kLeft',
|
|
SideMode.Right: 'cutlass::SideMode::kRight'
|
|
}
|
|
|
|
#
|
|
ShortSideModeNames = {
|
|
SideMode.Left: 'ls',
|
|
SideMode.Right: 'rs'
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class FillMode(enum.Enum):
|
|
Lower = enum_auto()
|
|
Upper = enum_auto()
|
|
|
|
#
|
|
FillModeTag = {
|
|
FillMode.Lower: 'cutlass::FillMode::kLower',
|
|
FillMode.Upper: 'cutlass::FillMode::kUpper'
|
|
}
|
|
|
|
#
|
|
ShortFillModeNames = {
|
|
FillMode.Lower: 'l',
|
|
FillMode.Upper: 'u'
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class DiagType(enum.Enum):
|
|
NonUnit = enum_auto()
|
|
Unit = enum_auto()
|
|
|
|
#
|
|
DiagTypeTag = {
|
|
DiagType.NonUnit: 'cutlass::DiagType::kNonUnit',
|
|
DiagType.Unit: 'cutlass::DiagType::kUnit'
|
|
}
|
|
|
|
#
|
|
ShortDiagTypeNames = {
|
|
DiagType.NonUnit: 'nu',
|
|
DiagType.Unit: 'un'
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class OpcodeClass(enum.Enum):
|
|
Simt = enum_auto()
|
|
TensorOp = enum_auto()
|
|
WmmaTensorOp = enum_auto()
|
|
SparseTensorOp = enum_auto()
|
|
|
|
OpcodeClassNames = {
|
|
OpcodeClass.Simt: 'simt',
|
|
OpcodeClass.TensorOp: 'tensorop',
|
|
OpcodeClass.WmmaTensorOp: 'wmma_tensorop',
|
|
}
|
|
|
|
OpcodeClassTag = {
|
|
OpcodeClass.Simt: 'cutlass::arch::OpClassSimt',
|
|
OpcodeClass.TensorOp: 'cutlass::arch::OpClassTensorOp',
|
|
OpcodeClass.WmmaTensorOp: 'cutlass::arch::OpClassWmmaTensorOp',
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class OperationKind(enum.Enum):
|
|
Gemm = enum_auto()
|
|
RankK = enum_auto()
|
|
Rank2K = enum_auto()
|
|
Trmm = enum_auto()
|
|
Symm = enum_auto()
|
|
Conv2d = enum_auto()
|
|
Conv3d = enum_auto()
|
|
|
|
#
|
|
OperationKindNames = {
|
|
OperationKind.Gemm: 'gemm'
|
|
, OperationKind.RankK: 'rank_k'
|
|
, OperationKind.Rank2K: 'rank_2k'
|
|
, OperationKind.Trmm: 'trmm'
|
|
, OperationKind.Symm: 'symm'
|
|
, OperationKind.Conv2d: 'conv2d'
|
|
, OperationKind.Conv3d: 'conv3d'
|
|
}
|
|
|
|
#
|
|
class Target(enum.Enum):
|
|
library = enum_auto()
|
|
#
|
|
ArchitectureNames = {
|
|
50: 'maxwell',
|
|
60: 'pascal',
|
|
61: 'pascal',
|
|
70: 'volta',
|
|
75: 'turing',
|
|
80: 'ampere',
|
|
89: 'ada',
|
|
90: 'hopper'
|
|
}
|
|
|
|
#
|
|
SharedMemPerCC = {
|
|
70: 96, # 96KB of SMEM
|
|
72: 96, # 96KB of SMEM
|
|
75: 64, # 64KB of SMEM
|
|
80: 163, # 163KB of SMEM - 1KB reserved for the driver
|
|
86: 99, # 99KB of SMEM - 1KB reserved for the driver
|
|
87: 163, # 163KB of SMEM - 1KB reserved for the driver
|
|
89: 99, # 99KB of SMEM - 1KB reserved for the driver
|
|
90: 227, # 227KB of SMEM - 1KB reserved for the driver
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
def SubstituteTemplate(template, values):
|
|
text = template
|
|
changed = True
|
|
while changed:
|
|
changed = False
|
|
for key, value in values.items():
|
|
regex = "\\$\\{%s\\}" % key
|
|
newtext = re.sub(regex, value, text)
|
|
if newtext != text:
|
|
changed = True
|
|
text = newtext
|
|
return text
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class GemmKind(enum.Enum):
|
|
Gemm = enum_auto()
|
|
Sparse = enum_auto()
|
|
Universal = enum_auto()
|
|
Universal3x = enum_auto()
|
|
SparseUniversal3x = enum_auto()
|
|
PlanarComplex = enum_auto()
|
|
PlanarComplexArray = enum_auto()
|
|
Grouped = enum_auto()
|
|
#
|
|
GemmKindNames = {
|
|
GemmKind.Gemm: "gemm",
|
|
GemmKind.Sparse: "spgemm",
|
|
GemmKind.Universal: "gemm",
|
|
GemmKind.Universal3x: "gemm",
|
|
GemmKind.SparseUniversal3x: "spgemm",
|
|
GemmKind.PlanarComplex: "gemm_planar_complex",
|
|
GemmKind.PlanarComplexArray: "gemm_planar_complex_array",
|
|
GemmKind.Grouped: "gemm_grouped",
|
|
}
|
|
|
|
#
|
|
class RankKKind(enum.Enum):
|
|
Universal = enum_auto()
|
|
|
|
#
|
|
RankKKindNames = {
|
|
RankKKind.Universal: "rank_k"
|
|
}
|
|
|
|
#
|
|
class TrmmKind(enum.Enum):
|
|
Universal = enum_auto()
|
|
|
|
#
|
|
TrmmKindNames = {
|
|
TrmmKind.Universal: "trmm"
|
|
}
|
|
|
|
#
|
|
class SymmKind(enum.Enum):
|
|
Universal = enum_auto()
|
|
|
|
#
|
|
SymmKindNames = {
|
|
SymmKind.Universal: "symm"
|
|
}
|
|
|
|
#
|
|
class EpilogueFunctor(enum.Enum):
|
|
LinearCombination = enum_auto()
|
|
LinearCombinationClamp = enum_auto()
|
|
|
|
#
|
|
EpilogueFunctorTag = {
|
|
EpilogueFunctor.LinearCombination: 'cutlass::epilogue::thread::LinearCombination',
|
|
EpilogueFunctor.LinearCombinationClamp: 'cutlass::epilogue::thread::LinearCombinationClamp',
|
|
}
|
|
|
|
#
|
|
class SwizzlingFunctor(enum.Enum):
|
|
Identity1 = enum_auto()
|
|
Identity2 = enum_auto()
|
|
Identity4 = enum_auto()
|
|
Identity8 = enum_auto()
|
|
Horizontal = enum_auto()
|
|
StridedDgradIdentity1 = enum_auto()
|
|
StridedDgradIdentity4 = enum_auto()
|
|
StridedDgradHorizontal = enum_auto()
|
|
StreamK = enum_auto()
|
|
|
|
#
|
|
SwizzlingFunctorTag = {
|
|
SwizzlingFunctor.Identity1: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>',
|
|
SwizzlingFunctor.Identity2: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<2>',
|
|
SwizzlingFunctor.Identity4: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<4>',
|
|
SwizzlingFunctor.Identity8: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>',
|
|
SwizzlingFunctor.Horizontal: 'cutlass::gemm::threadblock::GemmHorizontalThreadblockSwizzle',
|
|
SwizzlingFunctor.StridedDgradIdentity1: 'cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<1>',
|
|
SwizzlingFunctor.StridedDgradIdentity4: 'cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<4>',
|
|
SwizzlingFunctor.StridedDgradHorizontal: 'cutlass::conv::threadblock::StridedDgradHorizontalThreadblockSwizzle',
|
|
SwizzlingFunctor.StreamK: 'cutlass::gemm::threadblock::ThreadblockSwizzleStreamK',
|
|
}
|
|
|
|
#
|
|
class GroupScheduleMode(enum.Enum):
|
|
Device = enum_auto(),
|
|
Host = enum_auto()
|
|
|
|
#
|
|
GroupScheduleModeTag = {
|
|
GroupScheduleMode.Device: 'cutlass::gemm::kernel::GroupScheduleMode::kDeviceOnly',
|
|
GroupScheduleMode.Host: 'cutlass::gemm::kernel::GroupScheduleMode::kHostPrecompute'
|
|
}
|
|
|
|
#
|
|
ShortGroupScheduleModeNames = {
|
|
GroupScheduleMode.Device: 'Device',
|
|
GroupScheduleMode.Host: 'Host'
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class ConvKind(enum.IntEnum):
|
|
Fprop = 0
|
|
Dgrad = 1
|
|
Wgrad = 2
|
|
|
|
#
|
|
ConvKindTag = {
|
|
ConvKind.Fprop: 'cutlass::conv::Operator::kFprop',
|
|
ConvKind.Dgrad: 'cutlass::conv::Operator::kDgrad',
|
|
ConvKind.Wgrad: 'cutlass::conv::Operator::kWgrad'
|
|
}
|
|
|
|
ConvKindNames = {
|
|
ConvKind.Fprop: 'fprop',
|
|
ConvKind.Dgrad: 'dgrad',
|
|
ConvKind.Wgrad: 'wgrad',
|
|
}
|
|
|
|
class ConvMode(enum.IntEnum):
|
|
CrossCorrelation = 0
|
|
Convolution = 1
|
|
|
|
#
|
|
class IteratorAlgorithm(enum.Enum):
|
|
Analytic = 0
|
|
Optimized = 1
|
|
FixedChannels = 2
|
|
FewChannels = 3
|
|
FixedStrideDilation = 4
|
|
|
|
#
|
|
IteratorAlgorithmTag = {
|
|
IteratorAlgorithm.Analytic: 'cutlass::conv::IteratorAlgorithm::kAnalytic',
|
|
IteratorAlgorithm.Optimized: 'cutlass::conv::IteratorAlgorithm::kOptimized',
|
|
IteratorAlgorithm.FixedChannels: 'cutlass::conv::IteratorAlgorithm::kFixedChannels',
|
|
IteratorAlgorithm.FewChannels: 'cutlass::conv::IteratorAlgorithm::kFewChannels',
|
|
IteratorAlgorithm.FixedStrideDilation: 'cutlass::conv::IteratorAlgorithm::kFixedStrideDilation'
|
|
}
|
|
|
|
IteratorAlgorithmNames = {
|
|
IteratorAlgorithm.Analytic: 'analytic',
|
|
IteratorAlgorithm.Optimized: 'optimized',
|
|
IteratorAlgorithm.FixedChannels: 'fixed_channels',
|
|
IteratorAlgorithm.FewChannels: 'few_channels',
|
|
IteratorAlgorithm.FixedStrideDilation: 'fixed_stride_dilation'
|
|
}
|
|
|
|
#
|
|
class StrideSupport(enum.Enum):
|
|
Strided = 0
|
|
Unity = 1
|
|
Fixed = 2
|
|
|
|
#
|
|
StrideSupportTag = {
|
|
StrideSupport.Strided: 'cutlass::conv::StrideSupport::kStrided',
|
|
StrideSupport.Unity: 'cutlass::conv::StrideSupport::kUnity',
|
|
StrideSupport.Fixed: 'cutlass::conv::StrideSupport::kFixed'
|
|
}
|
|
|
|
StrideSupportNames = {
|
|
StrideSupport.Strided: '',
|
|
StrideSupport.Unity: 'unity_stride',
|
|
StrideSupport.Fixed: 'fixed_stride'
|
|
}
|
|
|
|
#
|
|
class GroupMode(enum.Enum):
|
|
NoneGroup = enum_auto() # dense conv (G=1)
|
|
SingleGroup = enum_auto() # grouped convolution (single group per CTA)
|
|
MultipleGroup = enum_auto() # grouped convolution ( multiple groups per CTA)
|
|
Depthwise = enum_auto() # Depthwise convolution ( C=K=G )
|
|
|
|
#
|
|
GroupModeTag = {
|
|
GroupMode.NoneGroup: 'cutlass::conv::GroupMode::kNone',
|
|
GroupMode.SingleGroup: 'cutlass::conv::GroupMode::kSingleGroup',
|
|
GroupMode.MultipleGroup: 'cutlass::conv::GroupMode::kMultipleGroup',
|
|
GroupMode.Depthwise: 'cutlass::conv::GroupMode::kDepthwise',
|
|
}
|
|
|
|
GroupModeNames = {
|
|
GroupMode.NoneGroup: '',
|
|
GroupMode.SingleGroup: 'single_group',
|
|
GroupMode.MultipleGroup: 'multiple_group',
|
|
GroupMode.Depthwise: 'depthwise',
|
|
}
|
|
|
|
###################################################################################################
|
|
|
|
#
|
|
class MathInstruction:
|
|
def __init__(self,
|
|
instruction_shape, \
|
|
element_a, element_b, element_accumulator, \
|
|
opcode_class, math_operation = MathOperation.multiply_add \
|
|
):
|
|
|
|
self.instruction_shape = instruction_shape
|
|
self.element_a = element_a
|
|
self.element_b = element_b
|
|
self.element_accumulator = element_accumulator
|
|
self.opcode_class = opcode_class
|
|
self.math_operation = math_operation
|
|
#
|
|
class TileDescription:
|
|
|
|
def __init__(self, threadblock_shape, stages, warp_count, math_instruction, min_compute, max_compute, cluster_shape = [1,1,1]):
|
|
self.threadblock_shape = threadblock_shape
|
|
self.tile_shape = threadblock_shape
|
|
self.stages = stages
|
|
self.warp_count = warp_count
|
|
self.math_instruction = math_instruction
|
|
self.minimum_compute_capability = min_compute
|
|
self.maximum_compute_capability = max_compute
|
|
self.cluster_shape = cluster_shape
|
|
|
|
def procedural_name(self):
|
|
if self.minimum_compute_capability >= 90:
|
|
return "{tbm}x{tbn}x{tbk}_{cm}x{cn}x{ck}_{s}".format(
|
|
tbm = self.threadblock_shape[0],
|
|
tbn = self.threadblock_shape[1],
|
|
tbk = self.threadblock_shape[2],
|
|
cm = self.cluster_shape[0],
|
|
cn = self.cluster_shape[1],
|
|
ck = self.cluster_shape[2],
|
|
s = self.stages)
|
|
else:
|
|
return "%dx%d_%dx%d" % (self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], self.stages)
|
|
|
|
#
|
|
class Direct2dConvFixedStrideDilationTileDescription:
|
|
def __init__(self, threadblock_output_shape, filter_shape, stages, stride, dilation, warp_count, math_instruction, min_compute, max_compute):
|
|
self.threadblock_shape = [threadblock_output_shape[0]*threadblock_output_shape[1]*threadblock_output_shape[2], threadblock_output_shape[3], filter_shape[0]*filter_shape[1]]
|
|
self.threadblock_output_shape = threadblock_output_shape
|
|
self.filter_shape = filter_shape
|
|
self.stages = stages
|
|
self.warp_count = warp_count
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
self.math_instruction = math_instruction
|
|
self.minimum_compute_capability = min_compute
|
|
self.maximum_compute_capability = max_compute
|
|
|
|
def procedural_name(self):
|
|
str_name = "%dx%dx%d_%dx%dx%dx%d_%d_filter%dx%d" % (self.threadblock_shape[0],
|
|
self.threadblock_shape[1],
|
|
self.threadblock_shape[2],
|
|
self.threadblock_output_shape[0],
|
|
self.threadblock_output_shape[1],
|
|
self.threadblock_output_shape[2],
|
|
self.threadblock_output_shape[3],
|
|
self.stages,
|
|
self.filter_shape[0],
|
|
self.filter_shape[1])
|
|
# Fixed Strided and dilation
|
|
if self.stride != [-1, -1] and self.dilation != [-1, -1]:
|
|
str_name += "_stride%dx%d_dilation%dx%d" % (self.stride[0],
|
|
self.stride[1],
|
|
self.dilation[0],
|
|
self.dilation[1])
|
|
return str_name
|
|
|
|
#
|
|
class Direct2dConvFixedStrideDilationTileDescription:
|
|
def __init__(self, threadblock_output_shape, filter_shape, stages, stride, dilation, warp_count, math_instruction, min_compute, max_compute):
|
|
self.threadblock_shape = [threadblock_output_shape[0]*threadblock_output_shape[1]*threadblock_output_shape[2], threadblock_output_shape[3], filter_shape[0]*filter_shape[1]]
|
|
self.threadblock_output_shape = threadblock_output_shape
|
|
self.filter_shape = filter_shape
|
|
self.stages = stages
|
|
self.warp_count = warp_count
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
self.math_instruction = math_instruction
|
|
self.minimum_compute_capability = min_compute
|
|
self.maximum_compute_capability = max_compute
|
|
|
|
def procedural_name(self):
|
|
str_name = "%dx%dx%d_%dx%dx%dx%d_%d_filter%dx%d" % (self.threadblock_shape[0],
|
|
self.threadblock_shape[1],
|
|
self.threadblock_shape[2],
|
|
self.threadblock_output_shape[0],
|
|
self.threadblock_output_shape[1],
|
|
self.threadblock_output_shape[2],
|
|
self.threadblock_output_shape[3],
|
|
self.stages,
|
|
self.filter_shape[0],
|
|
self.filter_shape[1])
|
|
# Fixed Strided and dilation
|
|
if self.stride != [-1, -1] and self.dilation != [-1, -1]:
|
|
str_name += "_stride%dx%d_dilation%dx%d" % (self.stride[0],
|
|
self.stride[1],
|
|
self.dilation[0],
|
|
self.dilation[1])
|
|
return str_name
|
|
|
|
#
|
|
class TensorDescription:
|
|
def __init__(self, element, layout, alignment = 1, complex_transform = ComplexTransform.none):
|
|
self.element = element
|
|
self.layout = layout
|
|
self.alignment = alignment
|
|
self.complex_transform = complex_transform
|
|
|
|
#
|
|
class SymmetricTensorDescription:
|
|
def __init__(self, element, layout, fill_mode, alignment = 1, complex_transform = ComplexTransform.none, side_mode = SideMode.Left):
|
|
self.element = element
|
|
self.layout = layout
|
|
self.fill_mode = fill_mode
|
|
self.alignment = alignment
|
|
self.complex_transform = complex_transform
|
|
self.side_mode = side_mode
|
|
|
|
#
|
|
class TriangularTensorDescription:
|
|
def __init__(self, element, layout, side_mode, fill_mode, diag_type, alignment = 1, complex_transform = ComplexTransform.none):
|
|
self.element = element
|
|
self.layout = layout
|
|
self.side_mode = side_mode
|
|
self.fill_mode = fill_mode
|
|
self.diag_type = diag_type
|
|
self.alignment = alignment
|
|
self.complex_transform = complex_transform
|
|
|
|
#
|
|
def CalculateSmemUsage(operation):
|
|
cta_shape = operation.tile_description.threadblock_shape
|
|
stages = operation.tile_description.stages
|
|
|
|
if operation.operation_kind == OperationKind.Gemm and operation.gemm_kind == GemmKind.Sparse:
|
|
# Elements represented by 8 bits of metadata (based on 4:8, 2:4 or 1:2 sparsity)
|
|
if DataTypeSize[operation.A.element] == 32:
|
|
elements_per_8b_md = 2
|
|
elif DataTypeSize[operation.A.element] == 4:
|
|
elements_per_8b_md = 8
|
|
else:
|
|
elements_per_8b_md = 4
|
|
|
|
smem_per_stage = DataTypeSize[operation.A.element] * cta_shape[0] * (cta_shape[2] // 2) // 8 + \
|
|
DataTypeSize[operation.B.element] * cta_shape[1] * cta_shape[2] // 8 + \
|
|
cta_shape[0] * (cta_shape[2] // 2) // elements_per_8b_md
|
|
else:
|
|
# Few BLAS3 operations only have A tensor
|
|
data_type_size_a = DataTypeSize[operation.A.element]
|
|
data_type_size_b = DataTypeSize[operation.A.element]
|
|
if operation.is_mixed_input():
|
|
data_type_size_b = DataTypeSize[operation.B.element]
|
|
|
|
smem_per_stage = data_type_size_a * cta_shape[0] * cta_shape[2] // 8 + \
|
|
data_type_size_b * cta_shape[1] * cta_shape[2] // 8
|
|
|
|
smem_usage = smem_per_stage * stages
|
|
return (smem_usage >> 10)
|
|
|
|
|
|
class GemmUniversalMode(enum.IntEnum):
|
|
"""
|
|
Types corresponding to GemmUniversalMode
|
|
"""
|
|
Gemm = 0
|
|
GemmSplitKParallel = 1
|
|
Batched = 2
|
|
Array = 3
|
|
|
|
|
|
class SplitKMode(enum.IntEnum):
|
|
"""
|
|
Types corresponding to SplitKMode
|
|
"""
|
|
NoneSplitK = 0
|
|
Serial = 1
|
|
Parallel = 2
|