cutlass/include/cute/arch/copy_sm90_desc.hpp

343 lines
14 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#if !defined(__CUDACC_RTC__)
#include <cuda.h>
#include <cinttypes>
#endif
#include <cute/config.hpp>
#include <cute/arch/copy.hpp>
#include <cute/arch/copy_sm90.hpp>
#include <cute/container/alignment.hpp>
#include <cute/container/bit_field.hpp>
#include <cute/container/array.hpp>
#include <cute/numeric/numeric_types.hpp>
namespace cute
{
//////////////////////////////////////////////////////////////////////////////////////////////////////
/// Barriers are 64-bit of user-managed information used in broadly two types syncronization patterns
/// 1) arrive/wait on threads (usage: cp.async and warp-specialized kernels)
/// 2) transaction-based (usage: TMA transaction where a CTA issues one transaction)
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Initialize barrier present in shared memory
CUTE_HOST_DEVICE
void
initialize_barrier(uint64_t& smem_barrier, // 64 bits user-manged barrier in smem
int thread_count = 1) // Thread count expected to arrive/wait on this barrier
{
#if defined(CUTE_ARCH_TMA_SM90_ENABLED)
uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier);
asm volatile ("mbarrier.init.shared::cta.b64 [%0], %1;\n"
:: "r"(smem_int_ptr),
"r"(thread_count));
#endif
}
// Set the number of bytes transfered per transaction and perform an arrive operation as well
CUTE_HOST_DEVICE
void
set_barrier_transaction_bytes(uint64_t& smem_barrier, // 64 bits user-manged barrier in smem
uint32_t bytes) // Number of bytes transfered by per TMA transaction
{
#if defined(CUTE_ARCH_TMA_SM90_ENABLED)
uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier);
asm volatile ("mbarrier.arrive.expect_tx.shared::cta.b64 _, [%0], %1;\n"
:: "r"(smem_int_ptr),
"r"(bytes));
#endif
}
// Barrier wait
CUTE_HOST_DEVICE
void
wait_barrier(uint64_t& smem_barrier, // 64 bits user-manged barrier in smem
int phase_bit) // Current phase bit the barrier waiting to flip
{
#if defined(CUTE_ARCH_TMA_SM90_ENABLED)
uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier);
asm volatile(
"{\n"
".reg .pred P1;\n"
"LAB_WAIT:\n"
"mbarrier.try_wait.parity.shared::cta.b64 P1, [%0], %1;\n"
"@P1 bra.uni DONE;\n"
"bra.uni LAB_WAIT;\n"
"DONE:\n"
"}\n"
:: "r"(smem_int_ptr),
"r"(phase_bit));
#endif
}
// Barrier arrive
CUTE_HOST_DEVICE
void
arrive_barrier(uint64_t& smem_barrier) // 64 bits user-manged barrier in smem
{
#if defined(CUTE_ARCH_TMA_SM90_ENABLED)
uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier);
asm volatile(
"{\n"
".reg .b64 state; \n"
"mbarrier.arrive.shared::cta.b64 state, [%0];\n"
"}\n"
:: "r"(smem_int_ptr));
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// TMA Descriptor and utilities
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace TMA {
enum class SmemSwizzleBits : uint8_t {
DISABLE = 0,
B32 = 1,
B64 = 2,
B128 = 3,
};
#if (__CUDACC_VER_MAJOR__ >= 12)
#if !defined(__CUDACC_RTC__)
/// @return The TMA descriptor datatype enum corresponding to T.
template <class T>
inline CUtensorMapDataType
to_CUtensorMapDataType() {
if constexpr (is_same_v<T, int8_t>) { return CU_TENSOR_MAP_DATA_TYPE_UINT8; } else
if constexpr (is_same_v<T, uint8_t>) { return CU_TENSOR_MAP_DATA_TYPE_UINT8; } else
if constexpr (is_same_v<T, float_e4m3_t>) { return CU_TENSOR_MAP_DATA_TYPE_UINT8; } else
if constexpr (is_same_v<T, float_e5m2_t>) { return CU_TENSOR_MAP_DATA_TYPE_UINT8; } else
if constexpr (is_same_v<T, uint16_t>) { return CU_TENSOR_MAP_DATA_TYPE_UINT16; } else
if constexpr (is_same_v<T, uint32_t>) { return CU_TENSOR_MAP_DATA_TYPE_UINT32; } else
if constexpr (is_same_v<T, uint64_t>) { return CU_TENSOR_MAP_DATA_TYPE_UINT64; } else
if constexpr (is_same_v<T, int32_t>) { return CU_TENSOR_MAP_DATA_TYPE_INT32; } else
if constexpr (is_same_v<T, int64_t>) { return CU_TENSOR_MAP_DATA_TYPE_INT64; } else
if constexpr (is_same_v<T, half_t>) { return CU_TENSOR_MAP_DATA_TYPE_FLOAT16; } else
if constexpr (is_same_v<T, float>) { return CU_TENSOR_MAP_DATA_TYPE_FLOAT32; } else
if constexpr (is_same_v<T, double>) { return CU_TENSOR_MAP_DATA_TYPE_FLOAT64; } else
if constexpr (is_same_v<T, bfloat16_t>) { return CU_TENSOR_MAP_DATA_TYPE_BFLOAT16; } else
if constexpr (is_same_v<T, tfloat32_t>) { return CU_TENSOR_MAP_DATA_TYPE_TFLOAT32; } else
{ static_assert(sizeof(T) < 0, "Unknown TMA Format!"); }
}
inline CUtensorMapSwizzle
to_CUtensorMapSwizzle(SmemSwizzleBits const& t) {
switch (t) {
default: assert(false && "Unknown SmemSwizzleBits!");
case SmemSwizzleBits::DISABLE: return CU_TENSOR_MAP_SWIZZLE_NONE;
case SmemSwizzleBits::B32: return CU_TENSOR_MAP_SWIZZLE_32B;
case SmemSwizzleBits::B64: return CU_TENSOR_MAP_SWIZZLE_64B;
case SmemSwizzleBits::B128: return CU_TENSOR_MAP_SWIZZLE_128B;
}
}
#endif // !defined(__CUDACC_RTC__)
#endif // (__CUDACC_VER_MAJOR__ >= 12)
} // end namespace TMA
#if (__CUDACC_VER_MAJOR__ >= 12) && !defined(__CUDACC_RTC__)
using TmaDescriptor = CUtensorMap;
using Im2ColTmaDescriptor = CUtensorMap;
#else
using TmaDescriptor = struct alignas(64) { char bytes[128]; };
using Im2ColTmaDescriptor = struct alignas(64) { char bytes[128]; };
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Initiates a TensorMap Prefetch
////////////////////////////////////////////////////////////////////////////////////////////////////
CUTE_HOST_DEVICE
void
prefetch_tma_descriptor(TmaDescriptor const* desc_ptr)
{
#if defined(CUTE_ARCH_TMA_SM90_ENABLED)
uint64_t gmem_int_desc = reinterpret_cast<uint64_t>(desc_ptr);
// Prefetch TMA Descriptor using generic addressing (i.e. no specific state space: const or param)
asm volatile (
"prefetch.tensormap [%0];"
:
: "l"(gmem_int_desc)
: "memory");
#else
CUTE_INVALID_CONTROL_PATH("Trying to use TMA Descriptor Prefetch without CUTE_ARCH_TMA_SM90_ENABLED.");
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Perform a TensorMap modification (by each field)
////////////////////////////////////////////////////////////////////////////////////////////////////
// Replace tensor pointer directly in GMEM
CUTE_HOST_DEVICE
void
tma_descriptor_replace_addr_in_global_mem(TmaDescriptor const* desc_ptr,
void const* const new_tensor_ptr)
{
#if defined(CUTE_ARCH_DEVICE_MODIFIABLE_TMA_SM90_ENABLED)
uint64_t gmem_int_desc = reinterpret_cast<uint64_t>(desc_ptr);
uint64_t const new_desc_addr = reinterpret_cast<uint64_t>(new_tensor_ptr);
asm volatile (
"tensormap.replace.tile.global_address.global.b1024.b64 [%0], %1;"
:: "l"(gmem_int_desc), "l"(new_desc_addr));
#else
CUTE_INVALID_CONTROL_PATH("Using TMA Descriptor modification without CUTE_ARCH_TMA_SM90_ENABLED and CUDA 12.3");
#endif
}
// Replace tensor pointer by bringing the tensormap from GMEM into the shared memory
CUTE_HOST_DEVICE
void
tma_descriptor_replace_addr_in_shared_mem(TmaDescriptor& smem_desc,
void const* const new_tensor_ptr)
{
#if defined(CUTE_ARCH_DEVICE_MODIFIABLE_TMA_SM90_ENABLED)
uint32_t smem_int_desc = cast_smem_ptr_to_uint(&smem_desc);
uint64_t const new_desc_addr = reinterpret_cast<uint64_t>(new_tensor_ptr);
uint64_t const smem_int64_desc = 0;
asm volatile (
"cvt.u64.u32 %0, %1;"
:: "l"(smem_int64_desc), "r"(smem_int_desc));
asm volatile (
"tensormap.replace.tile.global_address.shared::cta.b1024.b64 [%0], %1;"
:: "l"(smem_int64_desc), "l"(new_desc_addr));
#else
CUTE_INVALID_CONTROL_PATH("Using TMA Descriptor modification without CUTE_ARCH_TMA_SM90_ENABLED and CUDA 12.3");
#endif
}
// Replace tensor dims and strides for GEMMs by bringing the tensormap from GMEM into the shared memory
CUTE_HOST_DEVICE
void
tma_descriptor_replace_dims_strides_in_shared_mem(TmaDescriptor & smem_desc,
cute::array<uint32_t, 3> const& prob_shape,
cute::array<uint64_t, 3> const& prob_stride)
{
#if defined(CUTE_ARCH_DEVICE_MODIFIABLE_TMA_SM90_ENABLED)
uint32_t smem_int_desc = cast_smem_ptr_to_uint(&smem_desc);
uint64_t const smem_int64_desc = 0;
asm volatile (
"cvt.u64.u32 %0, %1;"
:: "l"(smem_int64_desc), "r"(smem_int_desc));
asm volatile (
"tensormap.replace.tile.global_dim.shared::cta.b1024.b32 [%0], 0, %1;"
:: "l"(smem_int64_desc), "r"(prob_shape[0]));
asm volatile (
"tensormap.replace.tile.global_dim.shared::cta.b1024.b32 [%0], 1, %1;"
:: "l"(smem_int64_desc), "r"(prob_shape[1]));
asm volatile (
"tensormap.replace.tile.global_dim.shared::cta.b1024.b32 [%0], 2, %1;"
:: "l"(smem_int64_desc), "r"(prob_shape[2]));
// Strides must be a multiple of 16. Also, stride for the intermost dimension is implicitly 1
asm volatile (
"tensormap.replace.tile.global_stride.shared::cta.b1024.b64 [%0], 0, %1;"
:: "l"(smem_int64_desc), "l"(prob_stride[1] >> 4));
asm volatile (
"tensormap.replace.tile.global_stride.shared::cta.b1024.b64 [%0], 1, %1;"
:: "l"(smem_int64_desc), "l"(prob_stride[2] >> 4));
#else
CUTE_INVALID_CONTROL_PATH("Using TMA Descriptor modification without CUTE_ARCH_TMA_SM90_ENABLED and CUDA 12.3");
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Perform a fused copy and fence operation (needed when modifying tensormap in shared memory)
////////////////////////////////////////////////////////////////////////////////////////////////////
CUTE_HOST_DEVICE
void
tma_descriptor_cp_fence_release(TmaDescriptor const* gmem_desc_ptr, TmaDescriptor& smem_desc)
{
#if defined(CUTE_ARCH_DEVICE_MODIFIABLE_TMA_SM90_ENABLED)
uint64_t gmem_int_desc = reinterpret_cast<uint64_t>(gmem_desc_ptr);
uint32_t smem_int_desc = cast_smem_ptr_to_uint(&smem_desc);
asm volatile (
"tensormap.cp_fenceproxy.global.shared::cta.tensormap::generic.release.gpu.sync.aligned [%0], [%1], 128;"
:: "l"(gmem_int_desc), "r"(smem_int_desc));
#else
CUTE_INVALID_CONTROL_PATH("Using TMA Descriptor modification without CUTE_ARCH_TMA_SM90_ENABLED and CUDA 12.3");
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Perform a release fence operation (needed when modifying tensormap directly in GMEM)
////////////////////////////////////////////////////////////////////////////////////////////////////
CUTE_HOST_DEVICE
void
tma_descriptor_fence_release()
{
#if defined(CUTE_ARCH_DEVICE_MODIFIABLE_TMA_SM90_ENABLED)
asm volatile ("fence.proxy.tensormap::generic.release.gpu;");
#else
CUTE_INVALID_CONTROL_PATH("Using TMA Descriptor modification without CUTE_ARCH_TMA_SM90_ENABLED and CUDA 12.3");
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Perform a acquire fence operation
////////////////////////////////////////////////////////////////////////////////////////////////////
CUTE_HOST_DEVICE
void
tma_descriptor_fence_acquire(TmaDescriptor const* desc_ptr)
{
#if defined(CUTE_ARCH_DEVICE_MODIFIABLE_TMA_SM90_ENABLED)
uint64_t gmem_int_desc = reinterpret_cast<uint64_t>(desc_ptr);
asm volatile (
"fence.proxy.tensormap::generic.acquire.gpu [%0], 128;"
:
: "l"(gmem_int_desc)
: "memory");
asm volatile (
"cvta.global.u64 %0, %0;"
:
: "l"(gmem_int_desc), "l"(gmem_int_desc)
: "memory");
#else
CUTE_INVALID_CONTROL_PATH("Using TMA Descriptor modification without CUTE_ARCH_TMA_SM90_ENABLED and CUDA 12.3");
#endif
}
///////////////////////////////////////////////////////////////////////////////
} // end namespace cute