168 lines
5.1 KiB
C++
168 lines
5.1 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/** Common algorithms on (hierarchical) tensors */
|
|
|
|
#pragma once
|
|
|
|
#include <cute/config.hpp>
|
|
|
|
#include <cute/tensor.hpp>
|
|
|
|
namespace cute
|
|
{
|
|
|
|
//
|
|
// for_each
|
|
//
|
|
|
|
template <class Engine, class Layout, class UnaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
for_each(Tensor<Engine,Layout> const& tensor, UnaryOp&& op)
|
|
{
|
|
CUTE_UNROLL
|
|
for (int i = 0; i < size(tensor); ++i) {
|
|
op(tensor(i));
|
|
}
|
|
}
|
|
|
|
template <class Engine, class Layout, class UnaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
for_each(Tensor<Engine,Layout>& tensor, UnaryOp&& op)
|
|
{
|
|
CUTE_UNROLL
|
|
for (int i = 0; i < size(tensor); ++i) {
|
|
op(tensor(i));
|
|
}
|
|
}
|
|
|
|
// Accept mutable temporaries
|
|
template <class Engine, class Layout, class UnaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
for_each(Tensor<Engine,Layout>&& tensor, UnaryOp&& op)
|
|
{
|
|
return for_each(tensor, op);
|
|
}
|
|
|
|
//
|
|
// transform
|
|
//
|
|
|
|
// Similar to std::transform but does not return number of elements affected
|
|
template <class Engine, class Layout, class UnaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
transform(Tensor<Engine,Layout>& tensor, UnaryOp&& op)
|
|
{
|
|
CUTE_UNROLL
|
|
for (int i = 0; i < size(tensor); ++i) {
|
|
tensor(i) = op(tensor(i));
|
|
}
|
|
}
|
|
|
|
// Accept mutable temporaries
|
|
template <class Engine, class Layout, class UnaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
transform(Tensor<Engine,Layout>&& tensor, UnaryOp&& op)
|
|
{
|
|
return transform(tensor, op);
|
|
}
|
|
|
|
// Similar to std::transform transforms one tensors and assigns it to another
|
|
template <class EngineIn, class LayoutIn,
|
|
class EngineOut, class LayoutOut,
|
|
class UnaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
transform(Tensor<EngineIn, LayoutIn > const& tensor_in,
|
|
Tensor<EngineOut,LayoutOut> & tensor_out,
|
|
UnaryOp&& op)
|
|
{
|
|
CUTE_UNROLL
|
|
for (int i = 0; i < size(tensor_in); ++i) {
|
|
tensor_out(i) = op(tensor_in(i));
|
|
}
|
|
}
|
|
|
|
// Accept mutable temporaries
|
|
template <class EngineIn, class LayoutIn,
|
|
class EngineOut, class LayoutOut,
|
|
class UnaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
transform(Tensor<EngineIn, LayoutIn > const& tensor_in,
|
|
Tensor<EngineOut,LayoutOut> && tensor_out,
|
|
UnaryOp&& op)
|
|
{
|
|
return transform(tensor_in, tensor_out, op);
|
|
}
|
|
|
|
// Similar to std::transform with a binary operation
|
|
// Takes two tensors as input and one tensor as output.
|
|
// Applies the binary_op to tensor_in1 and tensor_in2 and
|
|
// assigns it to tensor_out
|
|
template <class EngineIn1, class LayoutIn1,
|
|
class EngineIn2, class LayoutIn2,
|
|
class EngineOut, class LayoutOut,
|
|
class BinaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
transform(Tensor<EngineIn1,LayoutIn1> const& tensor_in1,
|
|
Tensor<EngineIn2,LayoutIn2> const& tensor_in2,
|
|
Tensor<EngineOut,LayoutOut> & tensor_out,
|
|
BinaryOp&& op)
|
|
{
|
|
CUTE_UNROLL
|
|
for (int i = 0; i < size(tensor_in1); ++i) {
|
|
tensor_out(i) = op(tensor_in1(i), tensor_in2(i));
|
|
}
|
|
}
|
|
|
|
// Accept mutable temporaries
|
|
template <class EngineIn1, class LayoutIn1,
|
|
class EngineIn2, class LayoutIn2,
|
|
class EngineOut, class LayoutOut,
|
|
class BinaryOp>
|
|
CUTE_HOST_DEVICE constexpr
|
|
void
|
|
transform(Tensor<EngineIn1,LayoutIn1> const& tensor_in1,
|
|
Tensor<EngineIn2,LayoutIn2> const& tensor_in2,
|
|
Tensor<EngineOut,LayoutOut> && tensor_out,
|
|
BinaryOp&& op)
|
|
{
|
|
return transform(tensor_in1, tensor_in2, tensor_out, op);
|
|
}
|
|
|
|
} // end namespace cute
|