cutlass/examples/45_dual_gemm/threadblock/dual_mma_base.h

233 lines
7.7 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
*/
#pragma once
#include "cutlass/aligned_buffer.h"
#include "cutlass/arch/memory.h"
#include "cutlass/array.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_shape.h"
#include "cutlass/numeric_types.h"
#include "cutlass/gemm/threadblock/mma_base.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace threadblock {
////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
/// instructions.
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape_,
/// Policy describing tuning details (concept: MmaPolicy)
typename Policy0_,
/// B1-specific version of the policy (concept: MmaPolicy)
typename Policy1_,
/// Number of stages,
int Stages,
/// Used for partial specialization
typename Enable = bool>
class DualMmaBase {
public:
///< Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape = Shape_;
///< Policy describing tuning details
using Policy0 = Policy0_;
using Policy1 = Policy1_;
//
// Dependent types
//
/// Warp-level Mma
using Operator0 = typename Policy0::Operator;
using Operator1 = typename Policy1::Operator;
/// Shape describing the overall GEMM computed from shared memory
/// by each warp.
using WarpGemm = typename Policy0::Operator::Shape;
/// Shape describing the number of warps filling the CTA
using WarpCount = GemmShape<Shape::kM / WarpGemm::kM,
Shape::kN / WarpGemm::kN,
Shape::kK / WarpGemm::kK>;
/// Number of warp-level GEMM oeprations
static int const kWarpGemmIterations =
(WarpGemm::kK / Operator0::Policy::MmaShape::kK);
/// Number of stages
static int const kStages = Stages;
/// Tensor reference to the A operand
using TensorRefA = TensorRef<typename Operator0::ElementA, typename Operator0::LayoutA>;
/// Tensor reference to the B operand
using TensorRefB0 = TensorRef<typename Operator0::ElementB, typename Operator0::LayoutB>;
using TensorRefB1 = TensorRef<typename Operator1::ElementB, typename Operator1::LayoutB>;
static_assert(kWarpGemmIterations > 1,
"The pipelined structure requires at least two warp-level "
"GEMM operations.");
static_assert((kWarpGemmIterations % 2) == 0,
"Inner loop iteration must be an even number.");
//
// Nested structs
//
/// Shared storage object needed by threadblock-scoped GEMM
class SharedStorage {
public:
//
// Type definitions
//
/// Shape of the A matrix operand in shared memory
using ShapeA = MatrixShape<Shape::kM + Policy0::SmemPaddingA::kRow,
Shape::kK * kStages +
Policy0::SmemPaddingA::kColumn>;
/// Shape of the B matrix operand in shared memory
using ShapeB0 =
MatrixShape<Shape::kK * kStages + Policy0::SmemPaddingB::kRow,
Shape::kN + Policy0::SmemPaddingB::kColumn>;
using ShapeB1 =
MatrixShape<Shape::kK * kStages + Policy1::SmemPaddingB::kRow,
Shape::kN + Policy1::SmemPaddingB::kColumn>;
public:
//
// Data members
//
/// Buffer for A operand
AlignedBuffer<typename Operator0::ElementA, ShapeA::kCount> operand_A;
/// Buffer for B operand
AlignedBuffer<typename Operator0::ElementB, ShapeB0::kCount> operand_B0;
AlignedBuffer<typename Operator1::ElementB, ShapeB1::kCount> operand_B1;
public:
//
// Methods
//
/// Returns a layout object for the A matrix
CUTLASS_DEVICE
static typename Operator0::LayoutA LayoutA() {
return Operator0::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn});
}
/// Returns a layout object for the B matrix
CUTLASS_HOST_DEVICE
static typename Operator0::LayoutB LayoutB0() {
return Operator0::LayoutB::packed({ShapeB0::kRow, ShapeB0::kColumn});
}
/// Returns a layout object for the B matrix
CUTLASS_HOST_DEVICE
static typename Operator1::LayoutB LayoutB1() {
return Operator1::LayoutB::packed({ShapeB1::kRow, ShapeB1::kColumn});
}
/// Returns a TensorRef to the A operand
CUTLASS_HOST_DEVICE
TensorRefA operand_A_ref() {
return TensorRefA{operand_A.data(), LayoutA()};
}
/// Returns a TensorRef to the B operand
CUTLASS_HOST_DEVICE
TensorRefB0 operand_B0_ref() {
return TensorRefB0{operand_B0.data(), LayoutB0()};
}
CUTLASS_HOST_DEVICE
TensorRefB1 operand_B1_ref() {
return TensorRefB1{operand_B1.data(), LayoutB1()};
}
};
protected:
//
// Data members
//
/// Iterator to load a warp-scoped tile of A operand from shared memory
typename Operator0::IteratorA warp_tile_iterator_A_;
/// Iterator to load a warp-scoped tile of B operand from shared memory
typename Operator0::IteratorB warp_tile_iterator_B0_;
typename Operator1::IteratorB warp_tile_iterator_B1_;
public:
/// Construct from tensor references
CUTLASS_DEVICE
DualMmaBase(
///< Shared storage needed for internal use by threadblock-scoped GEMM
SharedStorage &shared_storage,
///< ID within the threadblock
int thread_idx,
///< ID of warp
int warp_idx,
///< ID of each thread within a warp
int lane_idx
):
warp_tile_iterator_A_(shared_storage.operand_A_ref(), lane_idx),
warp_tile_iterator_B0_(shared_storage.operand_B0_ref(), lane_idx),
warp_tile_iterator_B1_(shared_storage.operand_B1_ref(), lane_idx) {
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////