151 lines
5.7 KiB
C++
151 lines
5.7 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Functor performing linear combination operations used by epilogues.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/numeric_types.h"
|
|
#include "cutlass/array.h"
|
|
#include "cutlass/functional.h"
|
|
#include "cutlass/numeric_conversion.h"
|
|
#include "cutlass/epilogue/thread/scale_type.h"
|
|
#include "cutlass/epilogue/thread/linear_combination_params.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace epilogue {
|
|
namespace thread {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Applies a linear combination operator to an array of elements.
|
|
///
|
|
/// D = alpha * accumulator + beta * source + uniform
|
|
///
|
|
template <
|
|
typename ElementOutput_, ///< Data type used to load and store tensors
|
|
int Count, ///< Number of elements computed per operation.
|
|
///< Usually it is 128/sizeof_bits<ElementOutput_>,
|
|
///< but we use 64 or 32 sometimes when there are not enough data to store
|
|
typename ElementAccumulator_ = ElementOutput_, ///< Accumulator data type
|
|
typename ElementCompute_ = ElementOutput_, ///< Data type used to compute linear combination
|
|
FloatRoundStyle Round = FloatRoundStyle::round_to_nearest
|
|
>
|
|
class LeftSiLUAndMul {
|
|
public:
|
|
|
|
using ElementOutput = ElementOutput_;
|
|
using ElementAccumulator = ElementAccumulator_;
|
|
using ElementCompute = ElementCompute_;
|
|
|
|
static int const kCount = Count;
|
|
using FragmentOutput = Array<ElementOutput, kCount>;
|
|
using FragmentAccumulator = Array<ElementAccumulator, kCount>;
|
|
using ComputeFragment = Array<ElementCompute, kCount>;
|
|
|
|
static FloatRoundStyle const kRound = Round;
|
|
|
|
struct Params{};
|
|
|
|
private:
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
ElementCompute alpha_;
|
|
ElementCompute beta_;
|
|
|
|
public:
|
|
|
|
/// Constructs the function object, possibly loading from pointers in host memory
|
|
CUTLASS_HOST_DEVICE
|
|
LeftSiLUAndMul(Params const &/*params*/) {}
|
|
|
|
/// Returns true if source is needed
|
|
CUTLASS_HOST_DEVICE
|
|
bool is_source_needed() const {
|
|
return true;
|
|
}
|
|
|
|
/// Functionally required for serial reduction in the epilogue
|
|
CUTLASS_HOST_DEVICE
|
|
void set_k_partition(int k_partition, int k_partition_count) {
|
|
assert(false);
|
|
}
|
|
|
|
/// Computes linear scaling: D = alpha * accumulator + beta * source
|
|
CUTLASS_HOST_DEVICE
|
|
FragmentOutput operator()(
|
|
FragmentAccumulator const &lhs,
|
|
FragmentAccumulator const &rhs) const {
|
|
|
|
// Convert source to interal compute numeric type
|
|
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_to_compute;
|
|
|
|
// Convert to destination numeric type
|
|
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> compute_to_output;
|
|
|
|
ComputeFragment converted_lhs = accumulator_to_compute(lhs);
|
|
ComputeFragment converted_rhs = accumulator_to_compute(rhs);
|
|
|
|
cutlass::epilogue::thread::SiLu<ComputeFragment> silu;
|
|
cutlass::multiplies<ComputeFragment> mul;
|
|
auto silu_lhs = silu(converted_lhs);
|
|
return compute_to_output(mul(silu_lhs, converted_rhs));
|
|
}
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
ElementOutput operator()(
|
|
ElementAccumulator const& lhs,
|
|
ElementAccumulator const& rhs
|
|
) const {
|
|
ElementCompute convert_lhs(lhs);
|
|
ElementCompute convert_rhs(rhs);
|
|
cutlass::epilogue::thread::SiLu<ElementCompute> silu;
|
|
cutlass::multiplies<ElementCompute> mul;
|
|
auto silu_lhs = silu(convert_lhs);
|
|
return ElementOutput(mul(silu_lhs, convert_rhs));
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace thread
|
|
} // namespace epilogue
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|