cutlass/examples/45_dual_gemm/dual_gemm.cu

461 lines
12 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief CUTLASS Dual-GEMM Example.
Fused kernel that outputs `D0` and `D1`.
We assume that B0/B1 have the same shape/layout
```
D0 = epilogue0(X @ B0, C0)
D1 = epilogue1(X @ B1, C1)
D2 = element_wise(D0, D1)
```
D0 and D1 will be optionally stored in gmem (`kStoreD0` / `kStoreD1`)
*/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "device/dual_gemm.h"
#include "thread/left_silu_and_mul.h"
#include "dual_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord problem_size(4096, 4096, 8192);
cutlass::gemm::GemmCoord batch_problem_size(321, 256, 512);
constexpr int kStages = 3;
constexpr bool kSplitKSerial = false;
constexpr bool kUseBias = true;
constexpr int kBatchCount = 37;
#if 0
using ElementOperandA = cutlass::bfloat16_t;
using ElementOperandB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using ElementCompute = float;
#else
using ElementOperandA = cutlass::half_t;
using ElementOperandB = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
#endif
constexpr auto kScaleType = kUseBias ? cutlass::epilogue::thread::ScaleType::NoBetaScaling : (
// No bias
kSplitKSerial ? cutlass::epilogue::thread::ScaleType::Default : cutlass::epilogue::thread::ScaleType::Nothing
);
using EpilogueOutputOp0 = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
kScaleType
>;
using EpilogueOutputOp1 = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
kScaleType
>;
using EpilogueOutputOp2 = cutlass::epilogue::thread::LeftSiLUAndMul<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementOutput,
ElementCompute
>;
const ElementCompute alpha0 = ElementCompute(1);
const ElementCompute beta0 = ElementCompute(kUseBias ? 1 : 0);
const ElementCompute alpha1 = ElementCompute(1);
const ElementCompute beta1 = ElementCompute(kUseBias ? 1 : 0);
bool run_nonfused_gemm_f16_sm80() {
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using Gemm0 = cutlass::gemm::device::Gemm<
ElementOperandA,
cutlass::layout::RowMajor,
ElementOperandB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp0,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
kStages,
8,
8,
kSplitKSerial
>;
using Gemm1 = cutlass::gemm::device::Gemm<
ElementOperandA,
cutlass::layout::RowMajor,
ElementOperandB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
kStages,
8,
8,
kSplitKSerial
>;
NonFusedDualGemmRun<Gemm0, Gemm1> nonFusedGemm;
std::cout << "Running Non-fused GEMMs FP16 TN GEMMs...\n";
bool pass = nonFusedGemm.run(
problem_size,
alpha0,
beta0,
alpha1,
beta1,
true /* is_profiling */
);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
template <typename T>
struct LeftSiLUAndMul {
struct Params{};
CUTLASS_HOST_DEVICE LeftSiLUAndMul(Params p) {}
CUTLASS_HOST_DEVICE void set_k_partition(int, int) {}
CUTLASS_HOST_DEVICE T operator() (
T const &lhs,
T const &rhs) const {
cutlass::epilogue::thread::SiLu<T> silu;
cutlass::multiplies<T> mul;
auto silu_lhs = silu(lhs);
return mul(silu_lhs, rhs);
}
template <int kCount>
CUTLASS_HOST_DEVICE cutlass::Array<T, kCount> operator() (
cutlass::Array<T, kCount> const &lhs,
cutlass::Array<T, kCount> const &rhs) const {
cutlass::epilogue::thread::SiLu<T> silu;
cutlass::multiplies<T> mul;
auto silu_lhs = silu(lhs);
return mul(silu_lhs, rhs);
}
};
bool run_fused_gemm_f16_sm80_shmem() {
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
// Optionally, we might not need intermediate GEMM outputs
constexpr bool kStoreD0 = true;
constexpr bool kStoreD1 = true;
using DualGemm = cutlass::gemm::device::DualGemm<
ElementOperandA,
cutlass::layout::RowMajor,
ElementOperandB,
cutlass::layout::ColumnMajor,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
EpilogueOutputOp2,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
kStages,
kStoreD0,
kStoreD1,
kSplitKSerial
>;
DualFusedGemmRun<DualGemm> fusedGemm;
std::cout << "Running Fused FP16 TN GEMMs + Epilogue2...\n";
bool passed = fusedGemm.run(
problem_size,
alpha0,
beta0,
alpha1,
beta1
);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
bool run_batched_fused_gemm_f16_sm80_shmem() {
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
// Optionally, we might not need intermediate GEMM outputs
constexpr bool kStoreD0 = true;
constexpr bool kStoreD1 = true;
using DualGemm = cutlass::gemm::device::DualGemm<
ElementOperandA,
cutlass::layout::RowMajor,
ElementOperandB,
cutlass::layout::ColumnMajor,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
EpilogueOutputOp2,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
kStages,
kStoreD0,
kStoreD1,
kSplitKSerial
>;
DualFusedGemmRun<DualGemm> fusedGemm;
std::cout << "Running Batched Fused FP16 TN GEMMs + Epilogue2...\n";
bool passed = fusedGemm.run(
batch_problem_size,
alpha0,
beta0,
alpha1,
beta1,
kBatchCount,
false, /* broadcast_b1 */
false /* is_profiling */
);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
bool run_broadcast_fused_gemm_f16_sm80_shmem() {
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
// Optionally, we might not need intermediate GEMM outputs
constexpr bool kStoreD0 = true;
constexpr bool kStoreD1 = true;
using DualGemm = cutlass::gemm::device::DualGemm<
ElementOperandA,
cutlass::layout::RowMajor,
ElementOperandB,
// different LayoutB0 and B1
cutlass::layout::RowMajor,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
EpilogueOutputOp2,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
kStages,
kStoreD0,
kStoreD1,
kSplitKSerial
>;
DualFusedGemmRun<DualGemm> fusedGemm;
std::cout << "Running Broadcast Fused FP16 TN GEMMs + Epilogue2...\n";
bool passed = fusedGemm.run(
problem_size,
alpha0,
beta0,
alpha1,
beta1,
1, /* batch_count */
true, /* broadcast_b1 */
true /* is_profiling */
);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
bool run_batched_broadcast_fused_gemm_f16_sm80_shmem() {
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
// Optionally, we might not need intermediate GEMM outputs
constexpr bool kStoreD0 = true;
constexpr bool kStoreD1 = true;
using DualGemm = cutlass::gemm::device::DualGemm<
ElementOperandA,
cutlass::layout::RowMajor,
ElementOperandB,
// different LayoutB0 and B1
cutlass::layout::RowMajor,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
EpilogueOutputOp2,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
kStages,
kStoreD0,
kStoreD1,
kSplitKSerial
>;
DualFusedGemmRun<DualGemm> fusedGemm;
std::cout << "Running Batch Broadcast Fused FP16 TN GEMMs + Epilogue2...\n";
bool passed = fusedGemm.run(
batch_problem_size,
alpha0,
beta0,
alpha1,
beta1,
kBatchCount,
true, /* broadcast_b1 */
false /* is_profiling */
);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_f16_sm80,
&run_fused_gemm_f16_sm80_shmem,
&run_batched_fused_gemm_f16_sm80_shmem,
&run_broadcast_fused_gemm_f16_sm80_shmem,
&run_batched_broadcast_fused_gemm_f16_sm80_shmem
};
std::string test_name = (
"dual-gemm f16 bias=" +
std::to_string(kUseBias) +
" split_k_serial=" +
std::to_string(kSplitKSerial) +
" batch_count=" +
std::to_string(kBatchCount)
);
return testRun(80, funcs, test_name);
}
////////////////////////////////////////////////////////////////////////////////