cutlass/examples/45_dual_gemm/device/dual_gemm.h

500 lines
17 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Performs a dual gemm in one fused kernel:
```
D0 = epilogue0(X @ B0, C0)
D1 = epilogue1(X @ B1, C1)
D2 = element_wise(D0, D1)
```
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/arch.h"
#include "cutlass/device_kernel.h"
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
#include "cutlass/gemm/device/default_gemm_configuration.h"
#include "cutlass/gemm/threadblock/default_mma.h"
#include "cutlass/epilogue/thread/linear_combination_relu.h"
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
#include "../kernel/dual_gemm.h"
#include "../dual_gemm_common.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
/// Element type for A matrix operand
typename ElementA_,
/// Layout type for A matrix operand
typename LayoutA_,
/// Element type for B matrix operand
typename ElementB_,
/// Layout type for B0 matrix operand
typename LayoutB0_,
/// Layout type for B1 matrix operand
typename LayoutB1_,
/// Element type for C and D matrix operands
typename ElementC_,
/// Layout type for C and D matrix operands
typename LayoutC_,
/// Element type for internal accumulation
typename ElementAccumulator_,
/// Operator class tag
typename OperatorClass_,
/// Tag indicating architecture to tune for
typename ArchTag_,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape_,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape_,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape_,
/// Epilogue output operator
typename EpilogueOutputOp0_,
typename EpilogueOutputOp1_,
typename EpilogueOutputOp2_,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle_ = threadblock::GemmIdentityThreadblockSwizzle<>,
/// Number of stages used in the pipelined mainloop
int Stages =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kStages,
bool StoreD0 = true,
bool StoreD1 = true,
/// If true, kernel supports split-K with serial reduction
bool SplitKSerial = false,
/// Access granularity of A matrix in units of elements
int AlignmentA =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kAlignmentA,
/// Access granularity of B matrix in units of elements
int AlignmentB =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kAlignmentB,
/// Operation performed by GEMM
typename Operator_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::Operator>
class DualGemm {
public:
using ElementA = ElementA_;
using LayoutA = LayoutA_;
using TensorRefA = TensorRef<ElementA const, LayoutA>;
using ElementB = ElementB_;
using LayoutB0 = LayoutB0_;
using LayoutB1 = LayoutB1_;
using TensorRefB0 = TensorRef<ElementB const, LayoutB0>;
using TensorRefB1 = TensorRef<ElementB const, LayoutB1>;
using ElementC = ElementC_;
using LayoutC = LayoutC_;
using TensorRefC = TensorRef<ElementC const, LayoutC>;
using TensorRefD = TensorRef<ElementC, LayoutC>;
using ElementAccumulator = ElementAccumulator_;
using OperatorClass = OperatorClass_;
using ArchTag = ArchTag_;
using ThreadblockShape = ThreadblockShape_;
using WarpShape = WarpShape_;
using InstructionShape = InstructionShape_;
using EpilogueOutputOp0 = EpilogueOutputOp0_;
using EpilogueOutputOp1 = EpilogueOutputOp1_;
using EpilogueOutputOp2 = EpilogueOutputOp2_;
using ThreadblockSwizzle = ThreadblockSwizzle_;
using Operator = Operator_;
static int const kStages = Stages;
static int const kAlignmentA = AlignmentA;
static int const kAlignmentB = AlignmentB;
static int const kAlignmentC = EpilogueOutputOp1::kCount;
static bool const kSplitKSerial = SplitKSerial;
static bool constexpr kStoreD0 = StoreD0;
static bool constexpr kStoreD1 = StoreD1;
static ComplexTransform const kTransformA = ComplexTransform::kNone;
static ComplexTransform const kTransformB = ComplexTransform::kNone;
using LayoutScaleBias = layout::RowMajor;
/// Define the kernel
/// Define the threadblock-scoped matrix multiply-accumulate
static_assert(ArchTag::kMinComputeCapability >= 80, "Only multistage is implemented");
static_assert(kStages >= 3, "Only multistage is implemented");
using Mma0 = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB0, kAlignmentB,
ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, ArchTag,
ThreadblockShape, WarpShape,
InstructionShape, Stages, Operator>::ThreadblockMma;
using Mma1 = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB1, kAlignmentB,
ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, ArchTag,
ThreadblockShape, WarpShape,
InstructionShape, Stages, Operator>::ThreadblockMma;
using DualMma = threadblock::DualMmaMultistage<
typename Mma0::Shape,
typename Mma0::IteratorA,
typename Mma0::SmemIteratorA,
Mma0::kCacheOpA,
typename Mma0::IteratorB,
typename Mma0::SmemIteratorB,
Mma0::kCacheOpB,
typename Mma1::IteratorB,
typename Mma1::SmemIteratorB,
typename Mma0::ElementC,
typename Mma0::LayoutC,
typename Mma0::Policy,
typename Mma1::Policy,
Mma0::kStages,
SharedMemoryClearOption::kNone
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using Epilogue0 =
typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape, typename DualMma::Operator0, kPartitionsK, EpilogueOutputOp0,
EpilogueOutputOp0::kCount>::Epilogue;
using Epilogue1 =
typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape, typename DualMma::Operator1, kPartitionsK, EpilogueOutputOp1,
EpilogueOutputOp1::kCount>::Epilogue;
/// Define the kernel-level GEMM operator.
using DualGemmKernel = kernel::DualGemm<
DualMma,
Epilogue0, Epilogue1, EpilogueOutputOp2,
ThreadblockSwizzle, kSplitKSerial,
kStoreD0, kStoreD1>;
/// Argument structure
struct Arguments {
//
// Data members
//
DualGemmMode mode;
GemmCoord problem_size;
TensorRef<ElementA const, LayoutA> ref_A0;
TensorRef<ElementB const, LayoutB0> ref_B0;
TensorRef<ElementC const, LayoutC> ref_C0;
TensorRef<ElementC, LayoutC> ref_D0;
TensorRef<ElementB const, LayoutB1> ref_B1;
TensorRef<ElementC const, LayoutC> ref_C1;
TensorRef<ElementC, LayoutC> ref_D1;
TensorRef<ElementC, LayoutC> ref_D2;
typename EpilogueOutputOp0::Params epilogue0;
typename EpilogueOutputOp1::Params epilogue1;
typename EpilogueOutputOp2::Params epilogue2;
int split_k_slices;
int batch_count;
int64_t batch_stride_A;
int64_t batch_stride_B0;
int64_t batch_stride_B1;
int64_t batch_stride_C;
int64_t batch_stride_D;
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments(): problem_size(0, 0, 0), split_k_slices(1) {
}
/// Constructs an Arguments structure
CUTLASS_HOST_DEVICE
Arguments(
DualGemmMode mode,
GemmCoord problem_size_,
TensorRef<ElementA const, LayoutA> ref_A0_,
TensorRef<ElementB const, LayoutB0> ref_B0_,
TensorRef<ElementC const, LayoutC> ref_C0_,
TensorRef<ElementC, LayoutC> ref_D0_,
TensorRef<ElementB const, LayoutB1> ref_B1_,
TensorRef<ElementC const, LayoutC> ref_C1_,
TensorRef<ElementC, LayoutC> ref_D1_,
TensorRef<ElementC, LayoutC> ref_D2_,
typename EpilogueOutputOp0::Params epilogue0_ =
typename EpilogueOutputOp0::Params(),
typename EpilogueOutputOp1::Params epilogue1_ =
typename EpilogueOutputOp1::Params(),
typename EpilogueOutputOp2::Params epilogue2_ =
typename EpilogueOutputOp2::Params(),
int split_k_slices_ = 1,
int batch_count = 1,
int64_t batch_stride_A = 0,
int64_t batch_stride_B0 = 0,
int64_t batch_stride_B1 = 0,
int64_t batch_stride_C = 0,
int64_t batch_stride_D = 0
):
mode(mode),
problem_size(problem_size_),
ref_A0(ref_A0_),
ref_B0(ref_B0_),
ref_C0(ref_C0_),
ref_D0(ref_D0_),
ref_B1(ref_B1_),
ref_C1(ref_C1_),
ref_D1(ref_D1_),
ref_D2(ref_D2_),
epilogue0(epilogue0_),
epilogue1(epilogue1_),
epilogue2(epilogue2_),
split_k_slices(split_k_slices_),
batch_count(batch_count),
batch_stride_A(batch_stride_A),
batch_stride_B0(batch_stride_B0),
batch_stride_B1(batch_stride_B1),
batch_stride_C(batch_stride_C),
batch_stride_D(batch_stride_D) {
}
};
private:
/// Kernel parameters object
typename DualGemmKernel::Params params_;
public:
/// Constructs the GEMM.
DualGemm() = default;
/// Determines whether the GEMM can execute the given problem.
static Status can_implement(Arguments const &args) {
if (args.mode == DualGemmMode::kBatched && kSplitKSerial) {
return Status::kErrorInvalidProblem;
}
if (!kSplitKSerial && args.split_k_slices > 1) {
return Status::kErrorInvalidProblem;
}
if (kStoreD0 != (args.ref_D0.data() != nullptr)) {
return Status::kErrorInternal;
}
if (kStoreD1 != (args.ref_D1.data() != nullptr)) {
return Status::kErrorInternal;
}
Status status = DualGemmKernel::can_implement(
args.problem_size,
args.ref_A0.non_const_ref(),
args.ref_B0.non_const_ref(),
args.ref_C0.non_const_ref(),
args.ref_D0,
args.ref_B1.non_const_ref(),
args.ref_C1.non_const_ref(),
args.ref_D1,
args.ref_D2
);
if (status != Status::kSuccess) {
return status;
}
return Status::kSuccess;
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
size_t bytes = 0;
if (kSplitKSerial && args.split_k_slices > 1) {
// Determine grid shape
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord tiled_shape = threadblock_swizzle.get_tiled_shape(
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.split_k_slices);
bytes += sizeof(int) * size_t(tiled_shape.m()) * size_t(tiled_shape.n());
}
return bytes;
}
/// Initializes GEMM state from arguments.
Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {
// Determine grid shape
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.mode == DualGemmMode::kBatched ? args.batch_count : args.split_k_slices);
if (kSplitKSerial) {
if (args.split_k_slices > 1) {
if (!workspace) {
return Status::kErrorWorkspaceNull;
}
size_t bytes = get_workspace_size(args);
cudaError_t result = cudaMemsetAsync(workspace, 0, bytes, stream);
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
}
}
else {
if (args.split_k_slices > 1) {
return Status::kErrorInvalidProblem;
}
}
// Initialize the Params structure
params_ = typename DualGemmKernel::Params{
args.mode,
args.problem_size,
grid_shape,
args.ref_A0.non_const_ref(),
args.ref_B0.non_const_ref(),
args.ref_C0.non_const_ref(),
args.ref_D0,
args.ref_B1.non_const_ref(),
args.ref_C1.non_const_ref(),
args.ref_D1,
args.ref_D2,
args.epilogue0,
args.epilogue1,
args.epilogue2,
reinterpret_cast<int *>(workspace),
args.batch_stride_A,
args.batch_stride_B0,
args.batch_stride_B1,
args.batch_stride_C,
args.batch_stride_D,
};
return Status::kSuccess;
}
/// Lightweight update given a subset of arguments
Status update(Arguments const &args, void *workspace = nullptr) {
if (kSplitKSerial && args.split_k_slices > 1) {
if (!workspace) {
return Status::kErrorWorkspaceNull;
}
}
params_.ref_A0.reset(args.ref_A0.non_const_ref().data());
params_.ref_B0.reset(args.ref_B0.non_const_ref().data());
params_.ref_C0.reset(args.ref_C0.non_const_ref().data());
params_.ref_D0.reset(args.ref_D0.data());
params_.ref_B1.reset(args.ref_B1.non_const_ref().data());
params_.ref_C1.reset(args.ref_C1.non_const_ref().data());
params_.ref_D1.reset(args.ref_D1.data());
params_.ref_D2.reset(args.ref_D2.data());
params_.output_op_0 = args.epilogue0;
params_.output_op_1 = args.epilogue1;
params_.output_op_2 = args.epilogue2;
params_.semaphore = reinterpret_cast<int *>(workspace);
return Status::kSuccess;
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
ThreadblockSwizzle threadblock_swizzle;
dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);
dim3 block(DualGemmKernel::kThreadCount, 1, 1);
cudaError_t result;
int smem_size = int(sizeof(typename DualGemmKernel::SharedStorage));
if (smem_size >= (48 << 10)) {
result = cudaFuncSetAttribute(Kernel<DualGemmKernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
}
cutlass::Kernel<DualGemmKernel><<<grid, block, smem_size, stream>>>(params_);
result = cudaGetLastError();
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
};
} // namespace device
} // namespace gemm
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////