cutlass/examples/41_fused_multi_head_attention/fmha_grouped.h

1024 lines
36 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Grouped FMHA kernel
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/fast_math.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/complex.h"
#include "cutlass/semaphore.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/trace.h"
#include "cutlass/gemm/kernel/gemm_transpose_operands.h"
#include "fmha_grouped_problem_visitor.h"
#include "gemm_kernel_utils.h"
#include "gemm/mma_accum_lambda_iterator.h"
#include "epilogue/epilogue_rescale_output.h"
namespace {
static CUTLASS_DEVICE float atomicMaxFloat(float* addr, float value) {
// source: https://stackoverflow.com/a/51549250
return (value >= 0)
? __int_as_float(atomicMax((int*)addr, __float_as_int(value)))
: __uint_as_float(atomicMin((unsigned int*)addr, __float_as_uint(value)));
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename MM0_, ///! Structure for computing P = Q @ K
typename MM1_, ///! Structure for computing O = P @ V
typename scalar_t_,
typename accum_t_,
typename output_t_,
typename output_accum_t_,
bool kKeepOutputInRF, ///! Whether the intermediate output from MM0_ should be kept in the register file
GroupScheduleMode GroupScheduleMode_ ///! Type of scheduling to perform
>
struct FMHAGrouped {
public:
using MM0 = MM0_;
using MM1 = MM1_;
using scalar_t = scalar_t_;
using accum_t = accum_t_;
using output_t = output_t_;
using output_accum_t = output_accum_t_;
static GroupScheduleMode const kGroupScheduleMode = GroupScheduleMode_;
static constexpr bool kNeedsOutputAccumulatorBuffer = !kKeepOutputInRF &&
!cutlass::platform::is_same<output_accum_t, output_t>::value;
// Parameters to satisfy BaseGrouped
using ElementA = scalar_t;
using ElementB = scalar_t;
using ElementC = accum_t;
using LayoutA = typename MM0::LayoutA;
using LayoutB = typename MM0::ElementB;
using LayoutC = typename MM1::ElementC;
static ComplexTransform const kTransformA = ComplexTransform::kNone;
static ComplexTransform const kTransformB = ComplexTransform::kNone;
static int const kAlignmentA = MM0::kAlignmentA;
static int const kAlignmentB = MM0::kAlignmentB;
static int const kAlignmentC = 1;
using Mma = typename MM1::Mma;
using EpilogueOutputOp = typename MM1::EpilogueOutputOp;
using ThreadblockSwizzle = void;
using Operator = typename MM1::Operator;
using WarpShape = typename MM1::WarpShape;
using InstructionShape = typename MM1::InstructionShape;
using ElementQ = scalar_t;
using ElementK = scalar_t;
using ElementP = accum_t;
using ElementV = scalar_t;
using ElementO = output_t;
using ElementOAccum = output_accum_t;
using ElementAccumulator = accum_t;
using LayoutQ = typename MM0::LayoutA;
using LayoutK = typename MM0::LayoutB;
using LayoutP = typename MM0::LayoutC;
using LayoutV = typename MM1::LayoutB;
using LayoutO = typename MM1::LayoutC;
static bool const kPreloadV = (MM1::Mma::ArchTag::kMinComputeCapability >= 80 &&
cutlass::sizeof_bits<ElementV>::value == 16);
static int const kAlignmentQ = MM0::kAlignmentA;
static int const kAlignmentK = MM0::kAlignmentB;
static int const kAlignmentV = 1;
using ThreadblockShape = typename MM0::ThreadblockShape;
static int const kQueriesPerBlock = ThreadblockShape::kM;
static int const kKeysPerBlock = ThreadblockShape::kN;
static constexpr bool kSupportsDropout = false;
static constexpr bool kSupportsBias = false;
/// Warp count (concept: GemmShape)
using WarpCount = typename MM1::WarpCount;
static int const kThreadsPerWarp = 32;
static int const kThreadCount = kThreadsPerWarp * WarpCount::kCount;
static constexpr int kNumWarpsPerBlock =
kQueriesPerBlock * kKeysPerBlock / (kThreadsPerWarp * kThreadsPerWarp);
using ProblemVisitor = FMHAGroupedProblemVisitor<
ThreadblockShape,
kGroupScheduleMode,
kThreadCount,
kThreadCount>;
//
// Structures
//
/// Argument structure
struct Arguments {
//
// Data members
//
GemmCoord *problem_sizes0{nullptr};
GemmCoord *problem_sizes1{nullptr};
int problem_count{0};
int threadblock_count{0};
ElementQ ** ptr_Q{nullptr};
ElementK ** ptr_K{nullptr};
ElementP ** ptr_P{nullptr};
ElementV ** ptr_V{nullptr};
ElementO ** ptr_O{nullptr};
ElementOAccum ** ptr_O_accum{nullptr};
typename LayoutQ::Stride::LongIndex *ldq{nullptr};
typename LayoutK::Stride::LongIndex *ldk{nullptr};
typename LayoutP::Stride::LongIndex *ldv{nullptr};
typename LayoutO::Stride::LongIndex *ldo{nullptr};
// Whether causal masking is to be performed
bool causal{false};
// Scale
ElementAccumulator scale{0};
// Only used by device-level operator
GemmCoord *host_problem_sizes{nullptr};
//
// Methods
//
/// Default ctor
Arguments() = default;
/// Ctor
CUTLASS_HOST_DEVICE
Arguments(
GemmCoord *problem_sizes0,
GemmCoord *problem_sizes1,
int problem_count,
int threadblock_count,
ElementQ ** ptr_Q,
ElementK ** ptr_K,
ElementP ** ptr_P,
ElementV ** ptr_V,
ElementO ** ptr_O,
ElementOAccum ** ptr_O_accum,
typename LayoutQ::Stride::LongIndex *ldq,
typename LayoutK::Stride::LongIndex *ldk,
typename LayoutP::Stride::LongIndex *ldp,
typename LayoutV::Stride::LongIndex *ldv,
typename LayoutO::Stride::LongIndex *ldo,
bool causal,
ElementAccumulator scale,
GemmCoord *host_problem_sizes=nullptr
):
problem_sizes0(problem_sizes0),
problem_sizes1(problem_sizes1),
problem_count(problem_count),
threadblock_count(threadblock_count),
ptr_Q(ptr_Q),
ptr_K(ptr_K),
ptr_P(ptr_P),
ptr_V(ptr_V),
ptr_O(ptr_O),
ptr_O_accum(kNeedsOutputAccumulatorBuffer ? ptr_O_accum : (accum_t**)ptr_O),
ldq(ldq),
ldk(ldk),
ldv(ldv),
ldo(ldo),
causal(causal),
scale(scale),
host_problem_sizes(host_problem_sizes)
{
}
bool __host__ check_supported() {
CHECK_ALIGNED_PTR(ptr_Q, kAlignmentQ);
CHECK_ALIGNED_PTR(ptr_K, kAlignmentK);
CHECK_ALIGNED_PTR(ptr_V, kAlignmentV);
XFORMERS_CHECK(ldq % kAlignmentQ == 0, "query is not correctly aligned");
XFORMERS_CHECK(ldk % kAlignmentK == 0, "key is not correctly aligned");
XFORMERS_CHECK(ldv % kAlignmentV == 0, "value is not correctly aligned");
return true;
}
};
//
// Structure for precomputing values in host memory and passing to kernels
//
/// Parameters structure
struct Params {
typename ProblemVisitor::Params problem_visitor;
int threadblock_count;
ElementQ ** ptr_Q;
ElementK ** ptr_K;
ElementP ** ptr_P;
ElementV ** ptr_V;
ElementO ** ptr_O;
ElementOAccum ** ptr_O_accum;
typename LayoutQ::Stride::LongIndex *ldq;
typename LayoutK::Stride::LongIndex *ldk;
typename LayoutP::Stride::LongIndex *ldv;
typename LayoutO::Stride::LongIndex *ldo;
ElementAccumulator scale;
bool causal;
//
// Methods
//
CUTLASS_HOST_DEVICE
Params():
ptr_Q(nullptr),
ptr_K(nullptr),
ptr_P(nullptr),
ptr_V(nullptr),
ptr_O(nullptr),
ptr_O_accum(nullptr),
ldq(nullptr),
ldk(nullptr),
ldv(nullptr),
ldo(nullptr),
causal(false),
scale(0)
{ }
CUTLASS_HOST_DEVICE
Params(Arguments const &args,
void *workspace = nullptr,
int tile_count = 0):
problem_visitor(args.problem_sizes0, args.problem_sizes1, args.problem_count, workspace, tile_count),
threadblock_count(args.threadblock_count),
ptr_Q(args.ptr_Q),
ptr_K(args.ptr_K),
ptr_P(args.ptr_P),
ptr_V(args.ptr_V),
ptr_O(args.ptr_O),
ptr_O_accum(kNeedsOutputAccumulatorBuffer ? args.ptr_O_accum : (accum_t**)args.ptr_O),
ldq(args.ldq),
ldk(args.ldk),
ldv(args.ldv),
ldo(args.ldo),
causal(args.causal),
scale(args.scale)
{
}
CUTLASS_HOST_DEVICE
void update(
Arguments const &args,
void *workspace = nullptr,
int tile_count = 0) {
problem_visitor = typename ProblemVisitor::Params(args.problem_sizes0,
args.problem_sizes1,
args.problem_count,
workspace, tile_count);
threadblock_count = args.threadblock_count;
ptr_Q = args.ptr_Q;
ptr_K = args.ptr_K;
ptr_P = args.ptr_P;
ptr_V = args.ptr_V;
ptr_O = args.ptr_O;
ptr_O_accum = kNeedsOutputAccumulatorBuffer ? args.ptr_O_accum : (accum_t**)args.ptr_O;
ldq = args.ldq;
ldk = args.ldk;
ldv = args.ldv;
ldo = args.ldo;
causal = args.causal;
scale = args.scale;
}
};
// Shared storage - depends on kernel params
struct ScalingCoefs {
cutlass::Array<ElementAccumulator, kQueriesPerBlock> m_prime;
cutlass::Array<ElementAccumulator, kQueriesPerBlock> s_prime;
cutlass::Array<ElementAccumulator, kQueriesPerBlock> mi;
cutlass::Array<ElementAccumulator, kQueriesPerBlock> out_rescale;
cutlass::Array<ElementAccumulator, kQueriesPerBlock * MM0::MmaCore::WarpCount::kN>
addition_storage;
};
struct SharedStorageEpilogueAtEnd : ScalingCoefs {
struct SharedStorageAfterMM0 {
// Everything here might be overwritten during MM0
typename MM0::AccumulatorSharedStorage si;
typename MM1::Mma::SharedStorage mm1;
};
union {
typename MM0::Mma::SharedStorage mm0;
SharedStorageAfterMM0 after_mm0;
typename MM1::DefaultEpilogue::SharedStorage epilogue;
};
CUTLASS_DEVICE typename MM1::DefaultEpilogue::SharedStorage&
epilogue_shared_storage() {
return epilogue;
}
// ProblemVisitor shared storage can't be overlapped with others
typename ProblemVisitor::SharedStorage problem_visitor;
};
struct SharedStorageEpilogueInLoop : ScalingCoefs {
struct SharedStorageAfterMM0 {
// Everything here might be overwritten during MM0
typename MM0::AccumulatorSharedStorage si;
typename MM1::Mma::SharedStorage mm1;
typename MM1::DefaultEpilogue::SharedStorage epilogue;
};
union {
typename MM0::Mma::SharedStorage mm0;
SharedStorageAfterMM0 after_mm0;
};
CUTLASS_DEVICE typename MM1::DefaultEpilogue::SharedStorage&
epilogue_shared_storage() {
return after_mm0.epilogue;
}
// ProblemVisitor shared storage can't be overlapped with others
typename ProblemVisitor::SharedStorage problem_visitor;
};
using SharedStorage = typename cutlass::platform::conditional<
kKeepOutputInRF,
SharedStorageEpilogueAtEnd,
SharedStorageEpilogueInLoop>::type;
private:
// Parameters to be used by an individual tile
struct TileParams {
CUTLASS_HOST_DEVICE
static int query_start(int threadblock_idx) {
return threadblock_idx * kQueriesPerBlock;
}
// Returns whether this threadblock computes within the number of queries,
// which is determined by the M dimension of problem 0
CUTLASS_HOST_DEVICE
static bool can_compute(int threadblock_idx, const GemmCoord& problem_size0) {
return query_start(threadblock_idx) < problem_size0.m();
}
CUTLASS_HOST_DEVICE
static int num_queries(int threadblock_idx, const GemmCoord& problem_size0) {
return problem_size0.m() - query_start(threadblock_idx);
}
CUTLASS_HOST_DEVICE
static int num_keys(int threadblock_idx, const GemmCoord& problem_size0, bool causal) {
int nk = problem_size0.n();
if (causal) {
nk = cutlass::fast_min(int32_t(query_start(threadblock_idx) + kQueriesPerBlock), nk);
}
return nk;
}
};
public:
//
// Methods
//
CUTLASS_DEVICE
FMHAGrouped() { }
/// Determines whether kernel satisfies alignment
static Status can_implement(cutlass::gemm::GemmCoord const & problem_size) {
return Status::kSuccess;
}
static Status can_implement(Arguments const &args) {
return Status::kSuccess;
}
static CUTLASS_DEVICE int16_t thread_id() {
return threadIdx.x;
}
static CUTLASS_DEVICE int8_t warp_id() {
return threadIdx.x / kThreadsPerWarp;
}
static CUTLASS_DEVICE int8_t lane_id() {
return threadIdx.x % kThreadsPerWarp;
}
/// Executes one GEMM
CUTLASS_DEVICE
void operator()(Params const &params, SharedStorage &shared_storage) {
auto& m_prime = shared_storage.m_prime;
auto& s_prime = shared_storage.s_prime;
[[maybe_unused]] auto& si = shared_storage.after_mm0.si;
auto& mi = shared_storage.mi;
auto& out_rescale = shared_storage.out_rescale;
ProblemVisitor problem_visitor(
params.problem_visitor,
shared_storage.problem_visitor,
blockIdx.x);
// Outer 'persistent' loop to iterate over tiles
while (problem_visitor.next_tile()) {
GemmCoord problem_size0 = problem_visitor.problem_size0();
GemmCoord problem_size1 = problem_visitor.problem_size1();
const int32_t threadblock_idx = int32_t(problem_visitor.threadblock_idx());
if (!TileParams::can_compute(threadblock_idx, problem_size0)) {
problem_visitor.advance(gridDim.x);
continue;
}
const int32_t problem_idx = problem_visitor.problem_index();
if (thread_id() < kQueriesPerBlock) {
s_prime[thread_id()] = ElementAccumulator(0);
out_rescale[thread_id()] = accum_t(1.0);
m_prime[thread_id()] =
-cutlass::platform::numeric_limits<ElementAccumulator>::infinity();
mi[thread_id()] = -cutlass::platform::numeric_limits<ElementAccumulator>::infinity();
}
ElementO *ptr_O = params.ptr_O[problem_idx] + TileParams::query_start(threadblock_idx) * params.ldo[problem_idx];
ElementOAccum *ptr_O_accum = params.ptr_O_accum[problem_idx] + TileParams::query_start(threadblock_idx) * params.ldo[problem_idx];
const int num_queries = TileParams::num_queries(threadblock_idx, problem_size0);
auto createOutputIter = [&](int col) -> typename MM1::OutputTileIterator {
using OutputTileIterator = typename MM1::OutputTileIterator;
return OutputTileIterator(
typename OutputTileIterator::Params{(int32_t)params.ldo[problem_idx]},
ptr_O,
typename OutputTileIterator::TensorCoord{
num_queries, problem_size1.n()},
thread_id(),
{0, col});
};
auto createOutputAccumIter = [&](int col) ->
typename MM1::OutputTileIteratorAccum {
using OutputTileIteratorAccum = typename MM1::OutputTileIteratorAccum;
return OutputTileIteratorAccum(
typename OutputTileIteratorAccum::Params{(int32_t)params.ldo[problem_idx]},
ptr_O_accum,
typename OutputTileIteratorAccum::TensorCoord{
num_queries, problem_size1.n()},
thread_id(),
{0, col});
};
typename MM1::Mma::FragmentC accum_o;
accum_o.clear();
const int num_keys = TileParams::num_keys(threadblock_idx, problem_size0, params.causal);
for (int32_t iter_key_start = 0; iter_key_start < num_keys;
iter_key_start += kKeysPerBlock) {
int32_t problem_size_0_m =
cutlass::fast_min((int32_t)kQueriesPerBlock, num_queries);
int32_t problem_size_0_n = cutlass::fast_min(
(int32_t)kKeysPerBlock, num_keys - iter_key_start);
int32_t const& problem_size_0_k = problem_size0.k();
int32_t const& problem_size_1_n = problem_size1.n();
int32_t const& problem_size_1_k = problem_size_0_n;
auto prologueV = [&](int blockN) {
typename MM1::Mma::IteratorB iterator_V(
typename MM1::IteratorB::Params{MM1::LayoutB(params.ldv[problem_idx])},
params.ptr_V[problem_idx] + iter_key_start * params.ldv[problem_idx],
{problem_size_1_k, problem_size_1_n},
thread_id(),
cutlass::MatrixCoord{0, blockN * MM1::Mma::Shape::kN});
MM1::Mma::prologue(
shared_storage.after_mm0.mm1,
iterator_V,
thread_id(),
problem_size_1_k);
};
__syncthreads(); // Need to have shared memory initialized, and `m_prime`
// updated from end of prev iter
//
// MATMUL: Q.K_t
//
// Computes the block-matrix product of:
// (a) query[query_start:query_end, :]
// with
// (b) key[iter_key_start:iter_key_start + kKeysPerBlock]
// and stores that into `shared_storage.si`
//
ElementQ *ptr_Q = params.ptr_Q[problem_idx] + TileParams::query_start(threadblock_idx) * params.ldq[problem_idx];
// Construct iterators to A and B operands
typename MM0::IteratorA iterator_A(
typename MM0::IteratorA::Params(
typename MM0::MmaCore::LayoutA(params.ldq[problem_idx])),
ptr_Q,
{problem_size_0_m, problem_size_0_k},
thread_id(),
{0, 0});
typename MM0::IteratorB iterator_B(
typename MM0::IteratorB::Params(
typename MM0::MmaCore::LayoutB(params.ldk[problem_idx])),
params.ptr_K[problem_idx] + iter_key_start * params.ldk[problem_idx],
{problem_size_0_k, problem_size_0_n},
thread_id(),
{0, 0});
// Construct thread-scoped matrix multiply
typename MM0::Mma mma(
shared_storage.mm0, thread_id(), warp_id(), lane_id());
typename MM0::Mma::FragmentC accum;
accum.clear();
auto gemm_k_iterations =
(problem_size_0_k + MM0::Mma::Shape::kK - 1) / MM0::Mma::Shape::kK;
// Compute threadblock-scoped matrix multiply-add
mma(gemm_k_iterations, accum, iterator_A, iterator_B, accum);
__syncthreads();
if (kPreloadV) {
prologueV(0);
} else {
MM1::Mma::drain_cp_asyncs();
}
typename MM0::Mma::Operator::IteratorC::TensorCoord
iteratorC_tile_offset = {
(warp_id() % MM0::Mma::WarpCount::kM),
(warp_id() / MM0::Mma::WarpCount::kM)
};
// Mask out last if causal
if (params.causal && num_keys - iter_key_start <= kKeysPerBlock) {
auto lane_offset = MM0::AccumLambdaIterator::get_lane_offset(
lane_id(), warp_id(), iteratorC_tile_offset);
int32_t last_col;
MM0::AccumLambdaIterator::iterateRows(
lane_offset,
[&](int accum_m) {
last_col = TileParams::query_start(threadblock_idx) + accum_m - iter_key_start;
},
[&](int accum_m, int accum_n, int idx) {
if (accum_n > last_col) {
accum[idx] =
-cutlass::platform::numeric_limits<accum_t>::infinity();
}
},
[&](int accum_m) {});
}
// DISPATCH_BOOL(iter_key_start == 0, kIsFirst, ([&] {
// DISPATCH_BOOL(
// num_keys - iter_key_start >= kKeysPerBlock,
// kFullColumns,
// ([&] {
// // Update `mi` from accum stored in registers
// // Also does accum[i] <- exp(accum[i] - mi)
// iterative_softmax<
// typename MM0::Mma::Operator::IteratorC,
// kFullColumns,
// kIsFirst>(
// accum_o,
// accum,
// mi,
// m_prime,
// s_prime,
// lane_id(),
// thread_id(),
// warp_id(),
// num_keys - iter_key_start,
// iteratorC_tile_offset,
// kSupportsBias ? 1.0f : params.scale);
// }));
// }));
// Update `mi` from accum stored in registers
// Also does accum[i] <- exp(accum[i] - mi)
iterative_softmax<typename MM0::Mma::Operator::IteratorC>(
accum_o,
accum,
mi,
m_prime,
s_prime,
out_rescale,
shared_storage.addition_storage,
lane_id(),
thread_id(),
warp_id(),
num_keys - iter_key_start,
iter_key_start == 0,
iteratorC_tile_offset,
kSupportsBias ? 1.0f : params.scale);
// Output results to shared-memory
int warp_idx_mn_0 = warp_id() %
(MM0::Mma::Base::WarpCount::kM * MM0::Mma::Base::WarpCount::kN);
auto output_tile_coords = cutlass::MatrixCoord{
warp_idx_mn_0 % MM0::Mma::Base::WarpCount::kM,
warp_idx_mn_0 / MM0::Mma::Base::WarpCount::kM};
MM0::B2bGemm::accumToSmem(
shared_storage.after_mm0.si, accum, lane_id(), output_tile_coords);
__syncthreads();
//
// MATMUL: Attn . V
// Run the matmul `attn @ V` for a block of attn and V.
// `attn` is read from shared memory (in `shared_storage_si`)
// `V` is read from global memory (with iterator_B)
//
const int64_t nBlockN = kKeepOutputInRF ? 1
: ceil_div(
(int64_t)problem_size_1_n,
int64_t(MM1::ThreadblockShape::kN));
// Iterate over the N dimension of GEMM1
for (int blockN = 0; blockN < nBlockN; ++blockN) {
int gemm_k_iterations =
(problem_size_1_k + MM1::Mma::Shape::kK - 1) / MM1::Mma::Shape::kK;
// Compute threadblock-scoped matrix multiply-add and store it in accum
// (in registers)
if (!kPreloadV) {
__syncthreads(); // we share shmem between mma and epilogue
}
typename MM1::Mma::IteratorB iterator_V(
typename MM1::IteratorB::Params{MM1::LayoutB(params.ldv[problem_idx])},
params.ptr_V[problem_idx] + iter_key_start * params.ldv[problem_idx],
{problem_size_1_k, problem_size_1_n},
thread_id(),
cutlass::MatrixCoord{0, blockN * MM1::Mma::Shape::kN});
typename MM1::Mma mma_pv(
// operand A: Pij_dropped in shared memory
shared_storage.after_mm0.si.accum_ref(),
// operand B: shared memory staging area for Vj, which is loaded
// from global memory
shared_storage.after_mm0.mm1.operand_B_ref(),
(int)thread_id(),
(int)warp_id(),
(int)lane_id());
mma_pv.set_prologue_done(kPreloadV);
if (!kKeepOutputInRF) {
accum_o.clear();
}
mma_pv(gemm_k_iterations, accum_o, iterator_V, accum_o);
__syncthreads();
if (kPreloadV && !kKeepOutputInRF && blockN + 1 < nBlockN) {
prologueV(blockN + 1);
}
if (!kKeepOutputInRF) {
MM1::Mma::drain_cp_asyncs();
DISPATCH_BOOL(
iter_key_start == 0, kIsFirst, ([&] {
DISPATCH_BOOL(
(iter_key_start + kKeysPerBlock) >= num_keys,
kIsLast,
([&] {
using DefaultEpilogue = typename MM1::DefaultEpilogue;
using DefaultOp = typename MM1::DefaultConfig::EpilogueOutputOp;
using ElementCompute = typename DefaultOp::ElementCompute;
using EpilogueOutputOp = typename cutlass::epilogue::
thread::MemoryEfficientAttentionNormalize<
typename cutlass::platform::conditional<
kIsLast,
output_t,
output_accum_t>::type,
output_accum_t,
DefaultOp::kCount,
typename DefaultOp::ElementAccumulator,
output_accum_t,
kIsFirst,
kIsLast,
cutlass::Array<ElementCompute, kQueriesPerBlock>>;
using Epilogue = typename cutlass::epilogue::threadblock::
EpiloguePipelined<
typename DefaultEpilogue::Shape,
typename MM1::Mma::Operator,
DefaultEpilogue::kPartitionsK,
typename cutlass::platform::conditional<
kIsLast,
typename MM1::OutputTileIterator,
typename MM1::OutputTileIteratorAccum>::type,
typename DefaultEpilogue::
AccumulatorFragmentIterator,
typename DefaultEpilogue::WarpTileIterator,
typename DefaultEpilogue::SharedLoadIterator,
EpilogueOutputOp,
typename DefaultEpilogue::Padding,
DefaultEpilogue::kFragmentsPerIteration,
true, // IterationsUnroll
typename MM1::OutputTileIteratorAccum // Read
// iterator
>;
int col = blockN * MM1::Mma::Shape::kN;
auto source_iter = createOutputAccumIter(col);
auto dest_iter = gemm_kernel_utils::call_conditional<
kIsLast,
decltype(createOutputIter),
decltype(createOutputAccumIter)>::
apply(createOutputIter, createOutputAccumIter, col);
EpilogueOutputOp rescale(s_prime, out_rescale);
Epilogue epilogue(
shared_storage.epilogue_shared_storage(),
thread_id(),
warp_id(),
lane_id());
epilogue(rescale, dest_iter, accum_o, source_iter);
}));
}));
if (!kKeepOutputInRF) {
__syncthreads();
}
}
}
__syncthreads(); // we modify `m_prime` after
}
if (kKeepOutputInRF) {
const bool kIsFirst = true;
const bool kIsLast = true;
using DefaultEpilogue = typename MM1::DefaultEpilogue;
using DefaultOp = typename MM1::DefaultConfig::EpilogueOutputOp;
using ElementCompute = typename DefaultOp::ElementCompute;
using EpilogueOutputOp =
typename cutlass::epilogue::thread::MemoryEfficientAttentionNormalize<
output_t, // output
output_accum_t, // source
DefaultOp::kCount,
typename DefaultOp::ElementAccumulator, // accum
output_accum_t, // compute
kIsFirst,
kIsLast,
cutlass::Array<ElementCompute, kQueriesPerBlock>>;
using Epilogue =
typename cutlass::epilogue::threadblock::EpiloguePipelined<
typename DefaultEpilogue::Shape,
typename MM1::Mma::Operator,
DefaultEpilogue::kPartitionsK,
typename MM1::OutputTileIterator, // destination
typename DefaultEpilogue::AccumulatorFragmentIterator,
typename DefaultEpilogue::WarpTileIterator,
typename DefaultEpilogue::SharedLoadIterator,
EpilogueOutputOp,
typename DefaultEpilogue::Padding,
DefaultEpilogue::kFragmentsPerIteration,
true, // IterationsUnroll
typename MM1::OutputTileIteratorAccum // source tile
>;
auto dest_iter = createOutputIter(0);
EpilogueOutputOp rescale(s_prime, out_rescale);
Epilogue epilogue(
shared_storage.epilogue_shared_storage(),
thread_id(),
warp_id(),
lane_id());
MM1::Mma::drain_cp_asyncs();
epilogue(rescale, dest_iter, accum_o);
}
// Next tile
problem_visitor.advance(gridDim.x);
__syncthreads(); // Don't start the next iteration until all threads are done using shared memory.
}
}
template <typename WarpIteratorC>
CUTLASS_DEVICE static void iterative_softmax(
typename WarpIteratorC::Fragment& frag_o, // output so far
typename WarpIteratorC::Fragment& frag,
cutlass::Array<accum_t, kQueriesPerBlock>& mi,
cutlass::Array<accum_t, kQueriesPerBlock>& m_prime,
cutlass::Array<accum_t, kQueriesPerBlock>& s_prime,
cutlass::Array<accum_t, kQueriesPerBlock>& out_rescale,
cutlass::Array<accum_t, kQueriesPerBlock * MM0::MmaCore::WarpCount::kN>&
addition_storage,
int8_t lane_id,
int8_t thread_id,
int8_t warp_id,
int max_col,
bool is_first,
typename WarpIteratorC::TensorCoord const& tile_offset,
float scaling) {
/* Iterates on the accumulator and corresponding position on result matrix
(1) Update `mi[r]` to the max value of the row `r`
(2) In a second iteration do the following:
(a) accum <- exp(accum - mi)
(b) m_prime <- exp(m_prime - mi)
(c) s_prime <- s_prime * m_prime + sum(accum)
All of this is done on registers, before we store all of this
on shared memory for the next matmul with Value.
*/
using Fragment = typename WarpIteratorC::Fragment;
using LambdaIterator = typename DefaultMmaAccumLambdaIterator<
WarpIteratorC,
accum_t,
kThreadsPerWarp>::Iterator;
// Convert to `accum_t` (rather than double)
constexpr float kLog2e = 1.4426950408889634074; // log_2(e) = M_LOG2E
static_assert(kQueriesPerBlock % kNumWarpsPerBlock == 0, "");
static constexpr int kLinesPerWarp = kQueriesPerBlock / kNumWarpsPerBlock;
frag = cutlass::multiplies<Fragment>()(scaling * kLog2e, frag);
auto lane_offset =
LambdaIterator::get_lane_offset(lane_id, warp_id, tile_offset);
// First update `mi` to the max per-row
{
accum_t max;
LambdaIterator::iterateRows(
lane_offset,
[&](int accum_m) {
max = -cutlass::platform::numeric_limits<accum_t>::infinity();
},
[&](int accum_m, int accum_n, int idx) {
if (accum_n < max_col) {
max = cutlass::fast_max(max, frag[idx]);
}
},
[&](int accum_m) {
// Having 4x atomicMax seems faster than reduce within warp
// first...
atomicMaxFloat(&mi[accum_m], max);
});
}
// Make sure we all share the update values for `mi`
__syncthreads();
// Doing this `exp` is quite expensive. Let's
// split it across the warps
bool restore_mi_to_minus_inf = false;
if (lane_id < kLinesPerWarp) {
int id = warp_id * kLinesPerWarp + lane_id;
auto m_prime_id = m_prime[id];
auto mi_id = mi[id];
bool changed = m_prime_id < mi_id; // `false` if both are -inf
if (changed) {
auto m_prime_exp = exp2f(m_prime_id - mi_id);
out_rescale[id] = m_prime_exp;
s_prime[id] *= m_prime_exp;
} else {
// Only when bias is enabled, it's possible that all the first values
// of attention are masked to `-inf`. In that case we want to avoid
// `nan = exp2f(-inf - (-inf))` so we temporarily set `mi` to 0
if (kSupportsBias &&
mi_id == -cutlass::platform::numeric_limits<accum_t>::infinity()) {
restore_mi_to_minus_inf = true;
mi[id] = 0.0f;
}
out_rescale[id] = 1.0f;
}
}
__syncthreads(); // Update output fragments
if (kKeepOutputInRF && !is_first) {
accum_t line_rescale;
LambdaIterator::iterateRows(
lane_offset,
[&](int accum_m) { line_rescale = out_rescale[accum_m]; },
[&](int accum_m, int accum_n, int idx) {
frag_o[idx] = frag_o[idx] * line_rescale;
},
[&](int accum_m) {});
}
// Update accum_m, accum_n, ...
{
accum_t mi_row, total_row;
LambdaIterator::iterateRows(
lane_offset,
[&](int accum_m) { mi_row = mi[accum_m]; },
[&](int accum_m, int accum_n, int idx) {
frag[idx] =
(accum_n < max_col) ? exp2f(frag[idx] - mi_row) : accum_t(0.0);
},
[&](int accum_m) {});
LambdaIterator::iterateRows(
lane_offset,
[&](int accum_m) { total_row = 0.0; },
[&](int accum_m, int accum_n, int idx) { total_row += frag[idx]; },
[&](int accum_m) {
if (LambdaIterator::reduceSameRow(
lane_id, total_row, [](accum_t a, accum_t b) {
return a + b;
})) {
// NOTE: we could atomically add `total_row` to `s_prime`, but
// it's faster (and deterministic) to avoid atomics here
addition_storage
[accum_m + kQueriesPerBlock * tile_offset.column()] =
total_row;
}
});
}
__syncthreads();
if (lane_id < kLinesPerWarp) {
int id = warp_id * kLinesPerWarp + lane_id;
accum_t total_row = s_prime[id];
if (restore_mi_to_minus_inf) {
// Restore `mi`, see above when we set `restore_mi_to_minus_inf=true`
mi[id] = -cutlass::platform::numeric_limits<accum_t>::infinity();
} else {
m_prime[id] = mi[id];
}
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < MM0::MmaCore::WarpCount::kN; ++i) {
total_row += addition_storage[id + kQueriesPerBlock * i];
}
s_prime[id] = total_row;
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////