cutlass/examples/35_gemm_softmax/gemm_with_epilogue_visitor.h

537 lines
16 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief GEMM kernel to support the epilogue visitor model
for customized softmax partial reduction epilogue fusion.
This source file will likely be moved to `include/cutlass/gemm/kernel/` in the future once
its usage has been stabilized. For now, it is included in this example to demonstrate
some basic output fusion options.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/fast_math.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/complex.h"
#include "cutlass/semaphore.h"
#include "cutlass/trace.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate
typename Epilogue_, ///! Epilogue
typename ThreadblockSwizzle_ ///! Threadblock swizzling function
>
struct GemmWithEpilogueVisitor {
public:
using Mma = Mma_;
using Epilogue = Epilogue_;
using EpilogueVisitor = typename Epilogue::Visitor;
using ThreadblockSwizzle = ThreadblockSwizzle_;
using ElementA = typename Mma::IteratorA::Element;
using LayoutA = typename Mma::IteratorA::Layout;
using TensorRefA = TensorRef<ElementA, LayoutA>;
using ElementB = typename Mma::IteratorB::Element;
using LayoutB = typename Mma::IteratorB::Layout;
using TensorRefB = TensorRef<ElementB, LayoutB>;
using ElementC = typename EpilogueVisitor::ElementOutput;
using LayoutC = typename Epilogue::Layout;
using TensorRefC = TensorRef<ElementC, LayoutC>;
static ComplexTransform const kTransformA = Mma::kTransformA;
static ComplexTransform const kTransformB = Mma::kTransformB;
using Operator = typename Mma::Operator;
using OperatorClass = typename Mma::Operator::OperatorClass;
using ThreadblockShape = typename Mma::Shape;
using WarpShape = typename Mma::Operator::Shape;
using InstructionShape = typename Mma::Policy::Operator::InstructionShape;
using ArchTag = typename Mma::ArchTag;
using ElementNorm = typename EpilogueVisitor::ElementNorm;
using ElementSum = typename EpilogueVisitor::ElementSum;
static int const kStages = Mma::kStages;
static int const kAlignmentA = Mma::IteratorA::AccessType::kElements;
static int const kAlignmentB = Mma::IteratorB::AccessType::kElements;
static int const kAlignmentC = EpilogueVisitor::kElementsPerAccess;
/// Warp count (concept: GemmShape)
using WarpCount = typename Mma::WarpCount;
static int const kThreadCount = 32 * WarpCount::kCount;
/// Split-K preserves splits that are 128b aligned
static int const kSplitKAlignment = const_max(
128 / sizeof_bits<ElementA>::value,
128 / sizeof_bits<ElementB>::value
);
//
// Structures
//
/// Argument structure
struct Arguments {
//
// Data members
//
GemmUniversalMode mode;
GemmCoord problem_size;
int batch_count;
TensorRefA ref_A;
TensorRefB ref_B;
TensorRefC ref_C;
TensorRefC ref_D;
ElementNorm *ptr_Max;
ElementSum *ptr_Sum;
int64_t batch_stride_A;
int64_t batch_stride_B;
typename EpilogueVisitor::Arguments epilogue_visitor;
//
// Methods
//
Arguments():
mode(GemmUniversalMode::kGemm),
batch_count(1)
{ }
/// constructs an arguments structure
Arguments(
GemmUniversalMode mode_,
GemmCoord problem_size_,
int batch_count_,
TensorRefA ref_A_,
TensorRefB ref_B_,
TensorRefC ref_C_,
TensorRefC ref_D_,
ElementNorm *ptr_Max_,
ElementSum *ptr_Sum_,
int64_t batch_stride_A_,
int64_t batch_stride_B_,
typename EpilogueVisitor::Arguments epilogue_visitor_
):
mode(mode_),
problem_size(problem_size_),
batch_count(batch_count_),
ref_A(ref_A_),
ref_B(ref_B_),
ref_C(ref_C_),
ref_D(ref_D_),
ptr_Max(ptr_Max_),
ptr_Sum(ptr_Sum_),
batch_stride_A(batch_stride_A_),
batch_stride_B(batch_stride_B_),
epilogue_visitor(epilogue_visitor_)
{
}
};
//
// Structure for precomputing values in host memory and passing to kernels
//
/// Parameters structure
struct Params {
cutlass::gemm::GemmCoord problem_size;
cutlass::gemm::GemmCoord grid_tiled_shape;
int swizzle_log_tile;
typename Mma::IteratorA::Params params_A;
typename Mma::IteratorB::Params params_B;
typename EpilogueVisitor::OutputTileIterator::Params params_C;
typename EpilogueVisitor::OutputTileIterator::Params params_D;
GemmUniversalMode mode;
int batch_count;
int gemm_k_size;
void * ptr_A;
void * ptr_B;
ElementC * ptr_C;
ElementC * ptr_D;
ElementNorm * ptr_Max;
ElementSum * ptr_Sum;
int64_t batch_stride_A;
int64_t batch_stride_B;
typename EpilogueVisitor::Params epilogue_visitor;
//
// Methods
//
CUTLASS_HOST_DEVICE
Params():
swizzle_log_tile(0),
params_A(0),
params_B(0),
params_C(0),
params_D(0),
batch_count(0),
gemm_k_size(0),
mode(cutlass::gemm::GemmUniversalMode::kGemm),
ptr_A(nullptr),
ptr_B(nullptr),
ptr_C(nullptr),
ptr_D(nullptr),
ptr_Max(nullptr),
ptr_Sum(nullptr),
batch_stride_A(0),
batch_stride_B(0)
{ }
Params(
Arguments const &args
):
problem_size(args.problem_size),
swizzle_log_tile(0),
params_A(args.ref_A.layout()),
params_B(args.ref_B.layout()),
params_C(args.ref_C.layout()),
params_D(args.ref_D.layout()),
mode(args.mode),
batch_count(args.batch_count),
gemm_k_size(args.problem_size.k()),
ptr_A(args.ref_A.data()),
ptr_B(args.ref_B.data()),
ptr_C(args.ref_C.data()),
ptr_D(args.ref_D.data()),
ptr_Max(args.ptr_Max),
ptr_Sum(args.ptr_Sum),
batch_stride_A(args.batch_stride_A),
batch_stride_B(args.batch_stride_B),
epilogue_visitor(args.epilogue_visitor)
{
ThreadblockSwizzle threadblock_swizzle;
grid_tiled_shape = threadblock_swizzle.get_tiled_shape(
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.batch_count);
if (args.mode == GemmUniversalMode::kGemm || args.mode == GemmUniversalMode::kGemmSplitKParallel) {
int const kAlignK = const_max(const_max(128 / sizeof_bits<ElementA>::value, 128 / sizeof_bits<ElementB>::value), 1);
gemm_k_size = round_up(ceil_div(args.problem_size.k(), args.batch_count), kAlignK);
if (gemm_k_size) {
grid_tiled_shape.k() = ceil_div(args.problem_size.k(), gemm_k_size);
}
}
swizzle_log_tile = threadblock_swizzle.get_log_tile(grid_tiled_shape);
}
};
/// Shared memory storage structure
union SharedStorage {
typename Mma::SharedStorage main_loop;
struct {
typename Epilogue::SharedStorage epilogue;
typename EpilogueVisitor::SharedStorage visitor;
} epilogue;
};
public:
//
// Methods
//
CUTLASS_DEVICE
GemmWithEpilogueVisitor() { }
/// Determines whether kernel satisfies alignment
static Status can_implement(
cutlass::gemm::GemmCoord const & problem_size) {
CUTLASS_TRACE_HOST("GemmWithEpilogueVisitor::can_implement()");
static int const kAlignmentA = Mma::IteratorA::AccessType::kElements;
static int const kAlignmentB = Mma::IteratorB::AccessType::kElements;
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
bool isAMisaligned = false;
bool isBMisaligned = false;
bool isCMisaligned = false;
if (platform::is_same<LayoutA, layout::RowMajor>::value) {
isAMisaligned = problem_size.k() % kAlignmentA;
} else if (platform::is_same<LayoutA, layout::ColumnMajor>::value) {
isAMisaligned = problem_size.m() % kAlignmentA;
} else if (platform::is_same<LayoutA, layout::ColumnMajorInterleaved<32>>::value
|| platform::is_same<LayoutA, layout::ColumnMajorInterleaved<64>>::value) {
isAMisaligned = problem_size.k() % kAlignmentA;
}
if (platform::is_same<LayoutB, layout::RowMajor>::value) {
isBMisaligned = problem_size.n() % kAlignmentB;
} else if (platform::is_same<LayoutB, layout::ColumnMajor>::value) {
isBMisaligned = problem_size.k() % kAlignmentB;
} else if (platform::is_same<LayoutB, layout::RowMajorInterleaved<32>>::value
|| platform::is_same<LayoutB, layout::RowMajorInterleaved<64>>::value) {
isBMisaligned = problem_size.k() % kAlignmentB;
}
if (platform::is_same<LayoutC, layout::RowMajor>::value) {
isCMisaligned = problem_size.n() % kAlignmentC;
} else if (platform::is_same<LayoutC, layout::ColumnMajor>::value) {
isCMisaligned = problem_size.m() % kAlignmentC;
} else if (platform::is_same<LayoutC, layout::ColumnMajorInterleaved<32>>::value
|| platform::is_same<LayoutC, layout::ColumnMajorInterleaved<64>>::value) {
isCMisaligned = problem_size.n() % kAlignmentC;
}
if (isAMisaligned) {
CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for A operand");
return Status::kErrorMisalignedOperand;
}
if (isBMisaligned) {
CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for B operand");
return Status::kErrorMisalignedOperand;
}
if (isCMisaligned) {
CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for C operand");
return Status::kErrorMisalignedOperand;
}
CUTLASS_TRACE_HOST(" returning kSuccess");
return Status::kSuccess;
}
static Status can_implement(Arguments const &args) {
return can_implement(args.problem_size);
}
#define SPLIT_K_ENABLED 1
/// Executes one GEMM
CUTLASS_DEVICE
void operator()(Params const &params, SharedStorage &shared_storage) {
// Compute threadblock location
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
// Early exit if CTA is out of range
if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||
params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {
return;
}
int offset_k = 0;
int problem_size_k = params.problem_size.k();
ElementA *ptr_A = static_cast<ElementA *>(params.ptr_A);
ElementB *ptr_B = static_cast<ElementB *>(params.ptr_B);
#if SPLIT_K_ENABLED
//
// Fetch pointers based on mode.
//
if (params.mode == GemmUniversalMode::kGemm ||
params.mode == GemmUniversalMode::kGemmSplitKParallel) {
if (threadblock_tile_offset.k() + 1 < params.grid_tiled_shape.k()) {
problem_size_k = (threadblock_tile_offset.k() + 1) * params.gemm_k_size;
}
offset_k = threadblock_tile_offset.k() * params.gemm_k_size;
}
else if (params.mode == GemmUniversalMode::kBatched) {
ptr_A += threadblock_tile_offset.k() * params.batch_stride_A;
ptr_B += threadblock_tile_offset.k() * params.batch_stride_B;
}
else if (params.mode == GemmUniversalMode::kArray) {
ptr_A = static_cast<ElementA * const *>(params.ptr_A)[threadblock_tile_offset.k()];
ptr_B = static_cast<ElementB * const *>(params.ptr_B)[threadblock_tile_offset.k()];
}
#endif
// Compute initial location in logical coordinates
cutlass::MatrixCoord tb_offset_A{
threadblock_tile_offset.m() * Mma::Shape::kM,
offset_k,
};
cutlass::MatrixCoord tb_offset_B{
offset_k,
threadblock_tile_offset.n() * Mma::Shape::kN
};
// Compute position within threadblock
int thread_idx = threadIdx.x;
// Construct iterators to A and B operands
typename Mma::IteratorA iterator_A(
params.params_A,
ptr_A,
{params.problem_size.m(), problem_size_k},
thread_idx,
tb_offset_A);
typename Mma::IteratorB iterator_B(
params.params_B,
ptr_B,
{problem_size_k, params.problem_size.n()},
thread_idx,
tb_offset_B);
// Broadcast the warp_id computed by lane 0 to ensure dependent code
// is compiled as warp-uniform.
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
int lane_idx = threadIdx.x % 32;
//
// Main loop
//
// Construct thread-scoped matrix multiply
Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);
typename Mma::FragmentC accumulators;
accumulators.clear();
// Compute threadblock-scoped matrix multiply-add
int gemm_k_iterations = (problem_size_k - offset_k + Mma::Shape::kK - 1) / Mma::Shape::kK;
// Compute threadblock-scoped matrix multiply-add
mma(
gemm_k_iterations,
accumulators,
iterator_A,
iterator_B,
accumulators);
//
// Masked tile iterators constructed from members
//
threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
//assume identity swizzle
MatrixCoord threadblock_offset(
threadblock_tile_offset.m() * Mma::Shape::kM,
threadblock_tile_offset.n() * Mma::Shape::kN
);
int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m();
//
// Construct the epilogue visitor
//
EpilogueVisitor epilogue_visitor(
params.epilogue_visitor,
shared_storage.epilogue.visitor,
params.problem_size.mn(),
thread_idx,
warp_idx,
lane_idx,
params.params_C,
params.params_D,
params.ptr_C,
params.ptr_D,
params.ptr_Max,
params.ptr_Sum,
threadblock_offset,
blockIdx.y *params.problem_size.m() );
if (params.mode == GemmUniversalMode::kGemm) {
// Indicate which position in a serial reduction the output operator is currently updating
epilogue_visitor.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k());
}
else if (params.mode == GemmUniversalMode::kBatched || params.mode == GemmUniversalMode::kArray) {
epilogue_visitor.set_batch_index(threadblock_tile_offset.k());
}
// Construct the epilogue
Epilogue epilogue(
shared_storage.epilogue.epilogue,
thread_idx,
warp_idx,
lane_idx);
// Execute the epilogue operator to update the destination tensor.
epilogue(epilogue_visitor, accumulators);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////