cutlass/docs/device_2tensor__foreach_8h_...

120 lines
27 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.11"/>
<title>CUTLASS: tensor_foreach.h Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { init_search(); });
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td id="projectlogo"><img alt="Logo" src="cutlass-logo-small.png"/></td>
<td id="projectalign" style="padding-left: 0.5em;">
<div id="projectname">CUTLASS
</div>
<div id="projectbrief">CUDA Templates for Linear Algebra Subroutines and Solvers</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main&#160;Page</span></a></li>
<li><a href="modules.html"><span>Modules</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
<div id="navrow2" class="tabs2">
<ul class="tablist">
<li><a href="files.html"><span>File&#160;List</span></a></li>
<li><a href="globals.html"><span>File&#160;Members</span></a></li>
</ul>
</div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><a class="el" href="dir_4eeb864c4eec08c7d6b9d3b0352cfdde.html">tools</a></li><li class="navelem"><a class="el" href="dir_88de82f9e8d739a2f42f92d95f0d7933.html">util</a></li><li class="navelem"><a class="el" href="dir_7e9e609009df72bf6226de354e72c328.html">include</a></li><li class="navelem"><a class="el" href="dir_ade2f6ff57439d30f4164e14e54bcf30.html">cutlass</a></li><li class="navelem"><a class="el" href="dir_ff60863f958a43c892071bb1f8a4c81a.html">util</a></li><li class="navelem"><a class="el" href="dir_01de8928c960cafb028e5f164701e1de.html">reference</a></li><li class="navelem"><a class="el" href="dir_ebbbb6f6f10686db77ac27d0af6d8201.html">device</a></li> </ul>
</div>
</div><!-- top -->
<div class="header">
<div class="headertitle">
<div class="title">device/tensor_foreach.h</div> </div>
</div><!--header-->
<div class="contents">
<a href="device_2tensor__foreach_8h.html">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span>&#160;<span class="comment">/***************************************************************************************************</span></div><div class="line"><a name="l00002"></a><span class="lineno"> 2</span>&#160;<span class="comment"> * Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.</span></div><div class="line"><a name="l00003"></a><span class="lineno"> 3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno"> 4</span>&#160;<span class="comment"> * Redistribution and use in source and binary forms, with or without modification, are permitted</span></div><div class="line"><a name="l00005"></a><span class="lineno"> 5</span>&#160;<span class="comment"> * provided that the following conditions are met:</span></div><div class="line"><a name="l00006"></a><span class="lineno"> 6</span>&#160;<span class="comment"> * * Redistributions of source code must retain the above copyright notice, this list of</span></div><div class="line"><a name="l00007"></a><span class="lineno"> 7</span>&#160;<span class="comment"> * conditions and the following disclaimer.</span></div><div class="line"><a name="l00008"></a><span class="lineno"> 8</span>&#160;<span class="comment"> * * Redistributions in binary form must reproduce the above copyright notice, this list of</span></div><div class="line"><a name="l00009"></a><span class="lineno"> 9</span>&#160;<span class="comment"> * conditions and the following disclaimer in the documentation and/or other materials</span></div><div class="line"><a name="l00010"></a><span class="lineno"> 10</span>&#160;<span class="comment"> * provided with the distribution.</span></div><div class="line"><a name="l00011"></a><span class="lineno"> 11</span>&#160;<span class="comment"> * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used</span></div><div class="line"><a name="l00012"></a><span class="lineno"> 12</span>&#160;<span class="comment"> * to endorse or promote products derived from this software without specific prior written</span></div><div class="line"><a name="l00013"></a><span class="lineno"> 13</span>&#160;<span class="comment"> * permission.</span></div><div class="line"><a name="l00014"></a><span class="lineno"> 14</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00015"></a><span class="lineno"> 15</span>&#160;<span class="comment"> * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS &quot;AS IS&quot; AND ANY EXPRESS OR</span></div><div class="line"><a name="l00016"></a><span class="lineno"> 16</span>&#160;<span class="comment"> * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND</span></div><div class="line"><a name="l00017"></a><span class="lineno"> 17</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE</span></div><div class="line"><a name="l00018"></a><span class="lineno"> 18</span>&#160;<span class="comment"> * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,</span></div><div class="line"><a name="l00019"></a><span class="lineno"> 19</span>&#160;<span class="comment"> * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;</span></div><div class="line"><a name="l00020"></a><span class="lineno"> 20</span>&#160;<span class="comment"> * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,</span></div><div class="line"><a name="l00021"></a><span class="lineno"> 21</span>&#160;<span class="comment"> * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE</span></div><div class="line"><a name="l00022"></a><span class="lineno"> 22</span>&#160;<span class="comment"> * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.</span></div><div class="line"><a name="l00023"></a><span class="lineno"> 23</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00024"></a><span class="lineno"> 24</span>&#160;<span class="comment"> **************************************************************************************************/</span></div><div class="line"><a name="l00025"></a><span class="lineno"> 25</span>&#160;<span class="preprocessor">#pragma once</span></div><div class="line"><a name="l00026"></a><span class="lineno"> 26</span>&#160;</div><div class="line"><a name="l00027"></a><span class="lineno"> 27</span>&#160;<span class="preprocessor">#include &lt;stdexcept&gt;</span></div><div class="line"><a name="l00028"></a><span class="lineno"> 28</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="cutlass_8h.html">cutlass/cutlass.h</a>&quot;</span></div><div class="line"><a name="l00029"></a><span class="lineno"> 29</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="device_2kernel_2tensor__foreach_8h.html">cutlass/util/reference/device/kernel/tensor_foreach.h</a>&quot;</span></div><div class="line"><a name="l00030"></a><span class="lineno"> 30</span>&#160;</div><div class="line"><a name="l00031"></a><span class="lineno"> 31</span>&#160;<span class="keyword">namespace </span><a class="code" href="namespacecutlass.html">cutlass</a> {</div><div class="line"><a name="l00032"></a><span class="lineno"> 32</span>&#160;<span class="keyword">namespace </span>reference {</div><div class="line"><a name="l00033"></a><span class="lineno"> 33</span>&#160;<span class="keyword">namespace </span>device {</div><div class="line"><a name="l00034"></a><span class="lineno"> 34</span>&#160;</div><div class="line"><a name="l00036"></a><span class="lineno"> 36</span>&#160;</div><div class="line"><a name="l00038"></a><span class="lineno"> 38</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> Func, <span class="keywordtype">int</span> Rank, <span class="keyword">typename</span> Params&gt;</div><div class="line"><a name="l00039"></a><span class="lineno"><a class="line" href="structcutlass_1_1reference_1_1device_1_1TensorForEach.html"> 39</a></span>&#160;<span class="keyword">struct </span><a class="code" href="structcutlass_1_1reference_1_1device_1_1TensorForEach.html">TensorForEach</a> {</div><div class="line"><a name="l00040"></a><span class="lineno"> 40</span>&#160;</div><div class="line"><a name="l00042"></a><span class="lineno"><a class="line" href="structcutlass_1_1reference_1_1device_1_1TensorForEach.html#ad693751cf94aea83a14235a5ec7c7e92"> 42</a></span>&#160; <a class="code" href="structcutlass_1_1reference_1_1device_1_1TensorForEach.html#ad693751cf94aea83a14235a5ec7c7e92">TensorForEach</a>(<a class="code" href="structcutlass_1_1Coord.html">Coord&lt;Rank&gt;</a> size, Params params = Params(), <span class="keywordtype">int</span> grid_size = 0, <span class="keywordtype">int</span> block_size = 0) {</div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span>&#160;</div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span>&#160; <span class="keywordflow">if</span> (!grid_size || !block_size) {</div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span>&#160;</div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span>&#160; <span class="comment">// if grid_size or block_size are zero, query occupancy using the CUDA Occupancy API</span></div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span>&#160; cudaError_t result = cudaOccupancyMaxPotentialBlockSize(</div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span>&#160; &amp;grid_size,</div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span>&#160; &amp;block_size,</div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span>&#160; reinterpret_cast&lt;void const *&gt;(kernel::TensorForEach&lt;Func, Rank, Params&gt;));</div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span>&#160;</div><div class="line"><a name="l00052"></a><span class="lineno"> 52</span>&#160; <span class="keywordflow">if</span> (result != cudaSuccess) {</div><div class="line"><a name="l00053"></a><span class="lineno"> 53</span>&#160; <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">&quot;Failed to query occupancy.&quot;</span>);</div><div class="line"><a name="l00054"></a><span class="lineno"> 54</span>&#160; }</div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span>&#160;</div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span>&#160; <span class="comment">// Limit block size. This has the effect of increasing the number of items processed by a</span></div><div class="line"><a name="l00057"></a><span class="lineno"> 57</span>&#160; <span class="comment">// single thread and reduces the impact of initialization overhead.</span></div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span>&#160; block_size = (block_size &lt; 128 ? block_size : 128);</div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span>&#160; }</div><div class="line"><a name="l00060"></a><span class="lineno"> 60</span>&#160;</div><div class="line"><a name="l00061"></a><span class="lineno"> 61</span>&#160; dim3 grid(grid_size, 1, 1);</div><div class="line"><a name="l00062"></a><span class="lineno"> 62</span>&#160; dim3 block(block_size, 1, 1);</div><div class="line"><a name="l00063"></a><span class="lineno"> 63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno"> 64</span>&#160; kernel::TensorForEach&lt;Func, Rank, Params&gt;&lt;&lt;&lt; grid, block &gt;&gt;&gt;(size, params);</div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span>&#160; }</div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span>&#160;};</div><div class="line"><a name="l00067"></a><span class="lineno"> 67</span>&#160;</div><div class="line"><a name="l00069"></a><span class="lineno"> 69</span>&#160;</div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> Func, <span class="keywordtype">int</span> Rank, <span class="keyword">typename</span> Params&gt;</div><div class="line"><a name="l00072"></a><span class="lineno"><a class="line" href="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach.html"> 72</a></span>&#160;<span class="keyword">struct </span><a class="code" href="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach.html">TensorDiagonalForEach</a> {</div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span>&#160;</div><div class="line"><a name="l00075"></a><span class="lineno"><a class="line" href="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach.html#adab64f903f234d0266400bd2416134ee"> 75</a></span>&#160; <a class="code" href="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach.html#adab64f903f234d0266400bd2416134ee">TensorDiagonalForEach</a>(<a class="code" href="structcutlass_1_1Coord.html">Coord&lt;Rank&gt;</a> size, Params params = Params(), <span class="keywordtype">int</span> start = 0, <span class="keywordtype">int</span> end = -1, <span class="keywordtype">int</span> block_size = 128) { </div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span>&#160;</div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span>&#160; <span class="keywordflow">if</span> (end &lt; 0) {</div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span>&#160; end = size.min();</div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span>&#160; }</div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160;</div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160; dim3 block(block_size, 1, 1);</div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160; dim3 grid((end - start + block_size - 1) / block_size, 1, 1);</div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span>&#160;</div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span>&#160; kernel::TensorDiagonalForEach&lt;Func, Rank, Params&gt;&lt;&lt;&lt; grid, block &gt;&gt;&gt;(size, params, start, end);</div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span>&#160; }</div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span>&#160;};</div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span>&#160;</div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span>&#160;</div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span>&#160;</div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> Element, <span class="keyword">typename</span> Func&gt;</div><div class="line"><a name="l00092"></a><span class="lineno"><a class="line" href="structcutlass_1_1reference_1_1device_1_1BlockForEach.html"> 92</a></span>&#160;<span class="keyword">struct </span><a class="code" href="structcutlass_1_1reference_1_1device_1_1BlockForEach.html">BlockForEach</a> {</div><div class="line"><a name="l00093"></a><span class="lineno"> 93</span>&#160;</div><div class="line"><a name="l00095"></a><span class="lineno"><a class="line" href="structcutlass_1_1reference_1_1device_1_1BlockForEach.html#a161e212b9b7ddbac36888de97538e106"> 95</a></span>&#160; <a class="code" href="structcutlass_1_1reference_1_1device_1_1BlockForEach.html#a161e212b9b7ddbac36888de97538e106">BlockForEach</a>(</div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span>&#160; Element *ptr, </div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span>&#160; <span class="keywordtype">size_t</span> capacity,</div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span>&#160; <span class="keyword">typename</span> Func::Params params = <span class="keyword">typename</span> Func::Params(), </div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span>&#160; <span class="keywordtype">int</span> grid_size = 0, </div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span>&#160; <span class="keywordtype">int</span> block_size = 0) {</div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span>&#160;</div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span>&#160; <span class="keywordflow">if</span> (!grid_size || !block_size) {</div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span>&#160;</div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span>&#160; <span class="comment">// if grid_size or block_size are zero, query occupancy using the CUDA Occupancy API</span></div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span>&#160; cudaError_t result = cudaOccupancyMaxPotentialBlockSize(</div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span>&#160; &amp;grid_size,</div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span>&#160; &amp;block_size,</div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span>&#160; reinterpret_cast&lt;void const *&gt;(kernel::BlockForEach&lt;Element, Func&gt;));</div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span>&#160;</div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span>&#160; <span class="keywordflow">if</span> (result != cudaSuccess) {</div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span>&#160; <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">&quot;Failed to query occupancy.&quot;</span>);</div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span>&#160; }</div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span>&#160;</div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span>&#160; <span class="comment">// Limit block size. This has the effect of increasing the number of items processed by a</span></div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span>&#160; <span class="comment">// single thread and reduces the impact of initialization overhead.</span></div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span>&#160; block_size = (block_size &lt; 128 ? block_size : 128);</div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span>&#160; }</div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span>&#160;</div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>&#160; dim3 grid(grid_size, 1, 1);</div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160; dim3 block(block_size, 1, 1);</div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160;</div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160; kernel::BlockForEach&lt;Element, Func&gt;&lt;&lt;&lt; grid, block &gt;&gt;&gt;(ptr, capacity, params);</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160; }</div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span>&#160;};</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span>&#160;</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span>&#160;</div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>&#160;} <span class="comment">// namespace device</span></div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span>&#160;} <span class="comment">// namespace reference</span></div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span>&#160;} <span class="comment">// namespace cutlass</span></div><div class="ttc" id="namespacecutlass_html"><div class="ttname"><a href="namespacecutlass.html">cutlass</a></div><div class="ttdef"><b>Definition:</b> aligned_buffer.h:35</div></div>
<div class="ttc" id="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach_html_adab64f903f234d0266400bd2416134ee"><div class="ttname"><a href="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach.html#adab64f903f234d0266400bd2416134ee">cutlass::reference::device::TensorDiagonalForEach::TensorDiagonalForEach</a></div><div class="ttdeci">TensorDiagonalForEach(Coord&lt; Rank &gt; size, Params params=Params(), int start=0, int end=-1, int block_size=128)</div><div class="ttdoc">Constructor performs the operation. </div><div class="ttdef"><b>Definition:</b> device/tensor_foreach.h:75</div></div>
<div class="ttc" id="structcutlass_1_1reference_1_1device_1_1TensorForEach_html_ad693751cf94aea83a14235a5ec7c7e92"><div class="ttname"><a href="structcutlass_1_1reference_1_1device_1_1TensorForEach.html#ad693751cf94aea83a14235a5ec7c7e92">cutlass::reference::device::TensorForEach::TensorForEach</a></div><div class="ttdeci">TensorForEach(Coord&lt; Rank &gt; size, Params params=Params(), int grid_size=0, int block_size=0)</div><div class="ttdoc">Constructor performs the operation. </div><div class="ttdef"><b>Definition:</b> device/tensor_foreach.h:42</div></div>
<div class="ttc" id="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach_html"><div class="ttname"><a href="structcutlass_1_1reference_1_1device_1_1TensorDiagonalForEach.html">cutlass::reference::device::TensorDiagonalForEach</a></div><div class="ttdoc">Launches a kernel calling a functor for each element along a tensor&amp;#39;s diagonal. </div><div class="ttdef"><b>Definition:</b> device/tensor_foreach.h:72</div></div>
<div class="ttc" id="structcutlass_1_1reference_1_1device_1_1BlockForEach_html_a161e212b9b7ddbac36888de97538e106"><div class="ttname"><a href="structcutlass_1_1reference_1_1device_1_1BlockForEach.html#a161e212b9b7ddbac36888de97538e106">cutlass::reference::device::BlockForEach::BlockForEach</a></div><div class="ttdeci">BlockForEach(Element *ptr, size_t capacity, typename Func::Params params=typename Func::Params(), int grid_size=0, int block_size=0)</div><div class="ttdoc">Constructor performs the operation. </div><div class="ttdef"><b>Definition:</b> device/tensor_foreach.h:95</div></div>
<div class="ttc" id="structcutlass_1_1reference_1_1device_1_1TensorForEach_html"><div class="ttname"><a href="structcutlass_1_1reference_1_1device_1_1TensorForEach.html">cutlass::reference::device::TensorForEach</a></div><div class="ttdoc">Launches a kernel calling a functor for each element in a tensor&amp;#39;s index space. </div><div class="ttdef"><b>Definition:</b> device/tensor_foreach.h:39</div></div>
<div class="ttc" id="structcutlass_1_1Coord_html"><div class="ttname"><a href="structcutlass_1_1Coord.html">cutlass::Coord</a></div><div class="ttdoc">Statically-sized array specifying Coords within a tensor. </div><div class="ttdef"><b>Definition:</b> coord.h:43</div></div>
<div class="ttc" id="structcutlass_1_1reference_1_1device_1_1BlockForEach_html"><div class="ttname"><a href="structcutlass_1_1reference_1_1device_1_1BlockForEach.html">cutlass::reference::device::BlockForEach</a></div><div class="ttdef"><b>Definition:</b> device/tensor_foreach.h:92</div></div>
<div class="ttc" id="device_2kernel_2tensor__foreach_8h_html"><div class="ttname"><a href="device_2kernel_2tensor__foreach_8h.html">tensor_foreach.h</a></div></div>
<div class="ttc" id="cutlass_8h_html"><div class="ttname"><a href="cutlass_8h.html">cutlass.h</a></div><div class="ttdoc">Basic include for CUTLASS. </div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.11
</small></address>
</body>
</html>