burn/crates/burn-import/pytorch-tests/tests/linear/mod.rs

153 lines
4.3 KiB
Rust

use burn::{
module::Module,
nn::{Linear, LinearConfig, Relu},
tensor::{Tensor, backend::Backend},
};
#[derive(Module, Debug)]
pub struct Net<B: Backend> {
fc1: Linear<B>,
fc2: Linear<B>,
relu: Relu,
}
impl<B: Backend> Net<B> {
/// Create a new model.
pub fn init(device: &B::Device) -> Self {
let fc1 = LinearConfig::new(2, 3).init(device);
let fc2 = LinearConfig::new(3, 4).init(device);
let relu = Relu;
Self { fc1, fc2, relu }
}
/// Forward pass of the model.
pub fn forward(&self, x: Tensor<B, 4>) -> Tensor<B, 4> {
let x = self.fc1.forward(x);
let x = self.relu.forward(x);
self.fc2.forward(x)
}
}
#[derive(Module, Debug)]
struct NetWithBias<B: Backend> {
fc1: Linear<B>,
}
impl<B: Backend> NetWithBias<B> {
/// Create a new model.
pub fn init(device: &B::Device) -> Self {
let fc1 = LinearConfig::new(2, 3).init(device);
Self { fc1 }
}
/// Forward pass of the model.
pub fn forward(&self, x: Tensor<B, 4>) -> Tensor<B, 4> {
self.fc1.forward(x)
}
}
#[cfg(test)]
mod tests {
type Backend = burn_ndarray::NdArray<f32>;
use burn::record::{FullPrecisionSettings, HalfPrecisionSettings, Recorder};
use burn::tensor::{Tolerance, ops::FloatElem};
use burn_import::pytorch::PyTorchFileRecorder;
type FT = FloatElem<Backend>;
use super::*;
fn linear_test(record: NetRecord<Backend>, precision: f32) {
let device = Default::default();
let model = Net::<Backend>::init(&device).load_record(record);
let input = Tensor::<Backend, 4>::from_data(
[[
[[0.63968194, 0.97427773], [0.830_029_9, 0.04443115]],
[[0.024_595_8, 0.25883394], [0.93905586, 0.416_715_5]],
]],
&device,
);
let output = model.forward(input);
let expected = Tensor::<Backend, 4>::from_data(
[[
[
[0.09778349, -0.13756673, 0.04962806, 0.08856435],
[0.03163241, -0.02848549, 0.01437942, 0.11905234],
],
[
[0.07628226, -0.10757702, 0.03656857, 0.03824598],
[0.05443089, -0.06904714, 0.02744314, 0.09997337],
],
]],
&device,
);
output
.to_data()
.assert_approx_eq::<FT>(&expected.to_data(), Tolerance::absolute(precision));
}
#[test]
fn linear_full_precision() {
let device = Default::default();
let record = PyTorchFileRecorder::<FullPrecisionSettings>::default()
.load("tests/linear/linear.pt".into(), &device)
.expect("Should decode state successfully");
linear_test(record, 1e-7);
}
#[test]
fn linear_half_precision() {
let device = Default::default();
let record = PyTorchFileRecorder::<HalfPrecisionSettings>::default()
.load("tests/linear/linear.pt".into(), &device)
.expect("Should decode state successfully");
linear_test(record, 1e-4);
}
#[test]
fn linear_with_bias() {
let device = Default::default();
let record = PyTorchFileRecorder::<FullPrecisionSettings>::default()
.load("tests/linear/linear_with_bias.pt".into(), &device)
.expect("Should decode state successfully");
let model = NetWithBias::<Backend>::init(&device).load_record(record);
let input = Tensor::<Backend, 4>::from_data(
[[
[[0.63968194, 0.97427773], [0.830_029_9, 0.04443115]],
[[0.024_595_8, 0.25883394], [0.93905586, 0.416_715_5]],
]],
&device,
);
let output = model.forward(input);
let expected = Tensor::<Backend, 4>::from_data(
[[
[
[-0.00432095, -1.107_101_2, 0.870_691_4],
[0.024_595_5, -0.954_462_9, 0.48518157],
],
[
[0.34315687, -0.757_384_2, 0.548_288],
[-0.06608963, -1.072_072_7, 0.645_800_5],
],
]],
&device,
);
output
.to_data()
.assert_approx_eq::<FT>(&expected.to_data(), Tolerance::default());
}
}