burn/crates/burn-import/pytorch-tests/tests/conv1d/mod.rs

99 lines
2.7 KiB
Rust

use burn::{
module::Module,
nn::conv::{Conv1d, Conv1dConfig},
tensor::{Tensor, backend::Backend},
};
#[derive(Module, Debug)]
pub struct Net<B: Backend> {
conv1: Conv1d<B>,
conv2: Conv1d<B>,
}
impl<B: Backend> Net<B> {
/// Create a new model from the given record.
pub fn init(device: &B::Device) -> Self {
let conv1 = Conv1dConfig::new(2, 2, 2).init(device);
let conv2 = Conv1dConfig::new(2, 2, 2).with_bias(false).init(device);
Self { conv1, conv2 }
}
/// Forward pass of the model.
pub fn forward(&self, x: Tensor<B, 3>) -> Tensor<B, 3> {
let x = self.conv1.forward(x);
self.conv2.forward(x)
}
}
#[cfg(test)]
mod tests {
type Backend = burn_ndarray::NdArray<f32>;
use burn::{
record::{FullPrecisionSettings, HalfPrecisionSettings, Recorder},
tensor::{Tolerance, ops::FloatElem},
};
use burn_import::pytorch::PyTorchFileRecorder;
type FT = FloatElem<Backend>;
use super::*;
fn conv1d(record: NetRecord<Backend>, precision: f32) {
let device = Default::default();
let model = Net::<Backend>::init(&device).load_record(record);
let input = Tensor::<Backend, 3>::from_data(
[[
[
0.93708336, 0.65559506, 0.31379688, 0.19801933, 0.41619217, 0.28432965,
],
[
0.33977574,
0.523_940_8,
0.798_063_9,
0.77176833,
0.01122457,
0.80996025,
],
]],
&device,
);
let output = model.forward(input);
let expected = Tensor::<Backend, 3>::from_data(
[[
[0.02987457, 0.03134188, 0.04234261, -0.02437721],
[-0.03788019, -0.02972012, -0.00806090, -0.01981254],
]],
&device,
);
output
.to_data()
.assert_approx_eq::<FT>(&expected.to_data(), Tolerance::absolute(precision));
}
#[test]
fn conv1d_full_precision() {
let device = Default::default();
let record = PyTorchFileRecorder::<FullPrecisionSettings>::default()
.load("tests/conv1d/conv1d.pt".into(), &device)
.expect("Should decode state successfully");
conv1d(record, 1e-7);
}
#[test]
fn conv1d_half_precision() {
let device = Default::default();
let record = PyTorchFileRecorder::<HalfPrecisionSettings>::default()
.load("tests/conv1d/conv1d.pt".into(), &device)
.expect("Should decode state successfully");
conv1d(record, 1e-4);
}
}