mirror of https://github.com/tracel-ai/burn.git
57 lines
1.4 KiB
Rust
57 lines
1.4 KiB
Rust
use burn::{
|
|
module::{Module, Param},
|
|
tensor::{Tensor, backend::Backend},
|
|
};
|
|
|
|
#[derive(Module, Debug)]
|
|
pub struct Net<B: Backend> {
|
|
buffer: Param<Tensor<B, 2>>,
|
|
}
|
|
|
|
impl<B: Backend> Net<B> {
|
|
/// Create a new model from the given record.
|
|
pub fn new_with(record: NetRecord<B>) -> Self {
|
|
Self {
|
|
buffer: record.buffer,
|
|
}
|
|
}
|
|
|
|
/// Forward pass of the model.
|
|
pub fn forward(&self, x: Tensor<B, 2>) -> Tensor<B, 2> {
|
|
self.buffer.val() + x
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
type Backend = burn_ndarray::NdArray<f32>;
|
|
|
|
use burn::{
|
|
record::{FullPrecisionSettings, Recorder},
|
|
tensor::Tolerance,
|
|
};
|
|
use burn_import::pytorch::PyTorchFileRecorder;
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn buffer() {
|
|
let device = Default::default();
|
|
let record = PyTorchFileRecorder::<FullPrecisionSettings>::default()
|
|
.load("tests/buffer/buffer.pt".into(), &device)
|
|
.expect("Should decode state successfully");
|
|
|
|
let model = Net::<Backend>::new_with(record);
|
|
|
|
let input = Tensor::<Backend, 2>::ones([3, 3], &device);
|
|
|
|
let output = model.forward(input);
|
|
|
|
let expected = Tensor::<Backend, 2>::ones([3, 3], &device) * 2.0;
|
|
|
|
output
|
|
.to_data()
|
|
.assert_approx_eq::<f32>(&expected.to_data(), Tolerance::default());
|
|
}
|
|
}
|