amplify-swift/AmplifyPlugins/Auth/Sources/libtommath/amplify_bn_mp_log_u32.c

182 lines
4.6 KiB
C

#include "amplify_tommath_private.h"
#ifdef AMPLIFY_BN_MP_LOG_U32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. */
/* Compute log_{base}(a) */
static amplify_mp_word s_pow(amplify_mp_word base, amplify_mp_word exponent)
{
amplify_mp_word result = 1uLL;
while (exponent != 0u) {
if ((exponent & 1u) == 1u) {
result *= base;
}
exponent >>= 1;
base *= base;
}
return result;
}
static amplify_mp_digit s_digit_ilogb(amplify_mp_digit base, amplify_mp_digit n)
{
amplify_mp_word bracket_low = 1uLL, bracket_mid, bracket_high, N;
amplify_mp_digit ret, high = 1uL, low = 0uL, mid;
if (n < base) {
return 0uL;
}
if (n == base) {
return 1uL;
}
bracket_high = (amplify_mp_word) base ;
N = (amplify_mp_word) n;
while (bracket_high < N) {
low = high;
bracket_low = bracket_high;
high <<= 1;
bracket_high *= bracket_high;
}
while (((amplify_mp_digit)(high - low)) > 1uL) {
mid = (low + high) >> 1;
bracket_mid = bracket_low * s_pow(base, (amplify_mp_word)(mid - low));
if (N < bracket_mid) {
high = mid ;
bracket_high = bracket_mid ;
}
if (N > bracket_mid) {
low = mid ;
bracket_low = bracket_mid ;
}
if (N == bracket_mid) {
return (amplify_mp_digit) mid;
}
}
if (bracket_high == N) {
ret = high;
} else {
ret = low;
}
return ret;
}
/* TODO: output could be "int" because the output of amplify_mp_radix_size is int, too,
as is the output of amplify_mp_bitcount.
With the same problem: max size is INT_MAX * AMPLIFY_MP_DIGIT not INT_MAX only!
*/
amplify_mp_err amplify_mp_log_u32(const amplify_mp_int *a, uint32_t base, uint32_t *c)
{
amplify_mp_err err;
amplify_mp_ord cmp;
uint32_t high, low, mid;
amplify_mp_int bracket_low, bracket_high, bracket_mid, t, bi_base;
err = AMPLIFY_MP_OKAY;
if (a->sign == AMPLIFY_MP_NEG) {
return AMPLIFY_MP_VAL;
}
if (AMPLIFY_MP_IS_ZERO(a)) {
return AMPLIFY_MP_VAL;
}
if (base < 2u) {
return AMPLIFY_MP_VAL;
}
/* A small shortcut for bases that are powers of two. */
if ((base & (base - 1u)) == 0u) {
int y, bit_count;
for (y=0; (y < 7) && ((base & 1u) == 0u); y++) {
base >>= 1;
}
bit_count = amplify_mp_count_bits(a) - 1;
*c = (uint32_t)(bit_count/y);
return AMPLIFY_MP_OKAY;
}
if (a->used == 1) {
*c = (uint32_t)s_digit_ilogb(base, a->dp[0]);
return err;
}
cmp = amplify_mp_cmp_d(a, base);
if ((cmp == AMPLIFY_MP_LT) || (cmp == AMPLIFY_MP_EQ)) {
*c = cmp == AMPLIFY_MP_EQ;
return err;
}
if ((err =
amplify_mp_init_multi(&bracket_low, &bracket_high,
&bracket_mid, &t, &bi_base, NULL)) != AMPLIFY_MP_OKAY) {
return err;
}
low = 0u;
amplify_mp_set(&bracket_low, 1uL);
high = 1u;
amplify_mp_set(&bracket_high, base);
/*
A kind of Giant-step/baby-step algorithm.
Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/
The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped
for small n.
*/
while (amplify_mp_cmp(&bracket_high, a) == AMPLIFY_MP_LT) {
low = high;
if ((err = amplify_mp_copy(&bracket_high, &bracket_low)) != AMPLIFY_MP_OKAY) {
goto LBL_ERR;
}
high <<= 1;
if ((err = amplify_mp_sqr(&bracket_high, &bracket_high)) != AMPLIFY_MP_OKAY) {
goto LBL_ERR;
}
}
amplify_mp_set(&bi_base, base);
while ((high - low) > 1u) {
mid = (high + low) >> 1;
if ((err = amplify_mp_expt_u32(&bi_base, (uint32_t)(mid - low), &t)) != AMPLIFY_MP_OKAY) {
goto LBL_ERR;
}
if ((err = amplify_mp_mul(&bracket_low, &t, &bracket_mid)) != AMPLIFY_MP_OKAY) {
goto LBL_ERR;
}
cmp = amplify_mp_cmp(a, &bracket_mid);
if (cmp == AMPLIFY_MP_LT) {
high = mid;
amplify_mp_exch(&bracket_mid, &bracket_high);
}
if (cmp == AMPLIFY_MP_GT) {
low = mid;
amplify_mp_exch(&bracket_mid, &bracket_low);
}
if (cmp == AMPLIFY_MP_EQ) {
*c = mid;
goto LBL_END;
}
}
*c = (amplify_mp_cmp(&bracket_high, a) == AMPLIFY_MP_EQ) ? high : low;
LBL_END:
LBL_ERR:
amplify_mp_clear_multi(&bracket_low, &bracket_high, &bracket_mid,
&t, &bi_base, NULL);
return err;
}
#endif