Surge/Tests/SurgeTests/SurgeTests+Extensions.swift

316 lines
11 KiB
Swift

// Copyright © 2014-2019 the Surge contributors
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
import XCTest
@testable import Surge
extension ExpressibleByFloatLiteral {
static func identity() -> Self {
return 1.0
}
static func constant() -> Self {
return 0.42
}
}
extension FloatingPoint {
// Hack-ish, but but hey, it works!
// And it's just part of the test target.
// We're not gonna ship it.
static func randomNormalized() -> Self {
switch self {
case is Float.Type:
let value = Float.random(in: 0.0...1.0)
return unsafeBitCast(value, to: self)
case is Double.Type:
let value = Double.random(in: 0.0...1.0)
return unsafeBitCast(value, to: self)
case _:
fatalError("Only supported by `Float` and `Double`")
}
}
}
extension Array where Element: FloatingPoint & ExpressibleByFloatLiteral {
static var defaultCount: Int {
return 1_000
}
static func randomNormalized() -> Array {
return randomNormalized(to: 0.0...1.0, count: Array.defaultCount)
}
static func randomNormalized(to range: ClosedRange<Element>) -> Array {
return randomNormalized(to: range, count: Array.defaultCount)
}
static func randomNormalized(to range: ClosedRange<Element> = 0.0...1.0, count: Int) -> Array {
let scale = range.upperBound - range.lowerBound
return (1...count).map { _ in range.lowerBound + (Element.randomNormalized() * scale) }
}
static func monotonic() -> Array {
return monotonic(count: Array.defaultCount)
}
static func monotonic(count: Int) -> Array {
return (1...count).map { Element($0) }
}
static func monotonicNormalized() -> Array {
return monotonicNormalized(to: 0.0...1.0, count: Array.defaultCount)
}
static func monotonicNormalized(to range: ClosedRange<Element>) -> Array {
return monotonicNormalized(to: range, count: Array.defaultCount)
}
static func monotonicNormalized(to range: ClosedRange<Element> = 0.0...1.0, count: Int) -> Array {
let scale = range.upperBound - range.lowerBound
let scalarCount = Element(count)
return (1...count).map { range.lowerBound + ((Element($0) / scalarCount) * scale) }
}
static func constant() -> Array {
return constant(of: 1.0)
}
static func constant(of scalar: Element) -> Array {
return constant(of: scalar, count: Array.defaultCount)
}
static func constant(of scalar: Element, count: Int) -> Array {
return Array(repeating: scalar, count: count)
}
}
extension Vector where Scalar: FloatingPoint & ExpressibleByFloatLiteral {
static var defaultDimensions: Int {
return 100
}
static func randomNormalized() -> Vector {
return randomNormalized(to: 0.0...1.0, dimensions: Vector.defaultDimensions)
}
static func randomNormalized(to range: ClosedRange<Scalar>) -> Vector {
return randomNormalized(to: range, dimensions: Vector.defaultDimensions)
}
static func randomNormalized(to range: ClosedRange<Scalar> = 0.0...1.0, dimensions: Int) -> Vector {
return Vector([Scalar].randomNormalized(to: range, count: dimensions))
}
static func monotonic() -> Vector {
return monotonic(dimensions: Vector.defaultDimensions)
}
static func monotonic(dimensions: Int) -> Vector {
return Vector([Scalar].monotonic(count: dimensions))
}
static func monotonicNormalized() -> Vector {
return monotonicNormalized(to: 0.0...1.0, dimensions: Vector.defaultDimensions)
}
static func monotonicNormalized(to range: ClosedRange<Scalar>) -> Vector {
return monotonicNormalized(to: range, dimensions: Vector.defaultDimensions)
}
static func monotonicNormalized(to range: ClosedRange<Scalar> = 0.0...1.0, dimensions: Int) -> Vector {
return Vector([Scalar].monotonicNormalized(to: range, count: dimensions))
}
static func constant() -> Vector {
return constant(of: 2.0)
}
static func constant(of scalar: Scalar) -> Vector {
return constant(of: scalar, dimensions: Vector.defaultDimensions)
}
static func constant(of scalar: Scalar, dimensions: Int) -> Vector {
return Vector([Scalar].constant(of: scalar, count: dimensions))
}
}
extension Matrix where Scalar: FloatingPoint & ExpressibleByFloatLiteral {
static var defaultRows: Int {
return 100
}
static var defaultColumns: Int {
return 100
}
static func randomNormalized() -> Matrix {
return randomNormalized(to: 0.0...1.0, rows: Matrix.defaultRows, columns: Matrix.defaultColumns)
}
static func randomNormalized(to range: ClosedRange<Scalar>) -> Matrix {
return randomNormalized(to: range, rows: Matrix.defaultRows, columns: Matrix.defaultColumns)
}
static func randomNormalized(to range: ClosedRange<Scalar> = 0.0...1.0, rows: Int, columns: Int) -> Matrix {
let count = rows * columns
let grid = [Scalar].randomNormalized(to: range, count: count)
return Matrix(rows: rows, columns: columns, grid: grid)
}
static func monotonic() -> Matrix {
return monotonic(rows: Matrix.defaultRows, columns: Matrix.defaultColumns)
}
static func monotonic(rows: Int, columns: Int) -> Matrix {
let count = rows * columns
let grid = [Scalar].monotonic(count: count)
return Matrix(rows: rows, columns: columns, grid: grid)
}
static func monotonicNormalized() -> Matrix {
return monotonicNormalized(to: 0.0...1.0, rows: Matrix.defaultRows, columns: Matrix.defaultColumns)
}
static func monotonicNormalized(to range: ClosedRange<Scalar>) -> Matrix {
return monotonicNormalized(to: range, rows: Matrix.defaultRows, columns: Matrix.defaultColumns)
}
static func monotonicNormalized(to range: ClosedRange<Scalar> = 0.0...1.0, rows: Int, columns: Int) -> Matrix {
let count = rows * columns
let grid = [Scalar].monotonicNormalized(to: range, count: count)
return Matrix(rows: rows, columns: columns, grid: grid)
}
static func constant() -> Matrix {
return constant(of: 2.0)
}
static func constant(of scalar: Scalar) -> Matrix {
return constant(of: scalar, rows: Matrix.defaultRows, columns: Matrix.defaultColumns)
}
static func constant(of scalar: Scalar, rows: Int, columns: Int) -> Matrix {
let count = rows * columns
let grid = [Scalar].constant(of: scalar, count: count)
return Matrix(rows: rows, columns: columns, grid: grid)
}
}
extension XCTestCase {
func validate_array<T>(
of: T.Type,
lhs: [T] = [T].monotonicNormalized(),
actual actualFunc: ([T]) -> [T],
expected expectedFunc: ([T]) -> [T],
accuracy: T,
file: StaticString = #file,
line: UInt = #line
) where T: ExpressibleByFloatLiteral & FloatingPoint {
let actual = actualFunc(lhs)
let expected = expectedFunc(lhs)
XCTAssertEqual(actual, expected, accuracy: accuracy, file: file, line: line)
}
func validate_inout_array<T>(
of: T.Type,
lhs: [T] = [T].monotonicNormalized(),
actual actualFunc: (inout [T]) -> (),
expected expectedFunc: ([T]) -> [T],
accuracy: T,
file: StaticString = #file,
line: UInt = #line
) where T: ExpressibleByFloatLiteral & FloatingPoint {
var actual = lhs
actualFunc(&actual)
let expected = expectedFunc(lhs)
XCTAssertEqual(actual, expected, accuracy: accuracy, file: file, line: line)
}
func validate_array_array<T>(
of: T.Type,
lhs: [T] = [T].monotonicNormalized(),
rhs: [T] = [T].monotonicNormalized(),
actual actualFunc: ([T], [T]) -> [T],
expected expectedFunc: ([T], [T]) -> [T],
accuracy: T,
file: StaticString = #file,
line: UInt = #line
) where T: ExpressibleByFloatLiteral & FloatingPoint {
let actual = actualFunc(lhs, rhs)
let expected = expectedFunc(lhs, rhs)
XCTAssertEqual(actual, expected, accuracy: accuracy, file: file, line: line)
}
func validate_inout_array_array<T>(
of: T.Type,
lhs: [T] = [T].monotonicNormalized(),
rhs: [T] = [T].monotonicNormalized(),
actual actualFunc: (inout [T], [T]) -> (),
expected expectedFunc: ([T], [T]) -> [T],
accuracy: T,
file: StaticString = #file,
line: UInt = #line
) where T: ExpressibleByFloatLiteral & FloatingPoint {
var actual = lhs
actualFunc(&actual, rhs)
let expected = expectedFunc(lhs, rhs)
XCTAssertEqual(actual, expected, accuracy: accuracy, file: file, line: line)
}
func validate_array<T>(
of: T.Type,
lhs: [T] = [T].monotonicNormalized(),
actual actualFunc: ([T]) -> T,
expected expectedFunc: ([T]) -> T,
accuracy: T,
file: StaticString = #file,
line: UInt = #line
) where T: ExpressibleByFloatLiteral & FloatingPoint {
let actual = actualFunc(lhs)
let expected = expectedFunc(lhs)
XCTAssertEqual(actual, expected, accuracy: accuracy, file: file, line: line)
}
func validate_array_array<T>(
of: T.Type,
lhs: [T] = [T].monotonicNormalized(),
rhs: [T] = [T].monotonicNormalized(),
actual actualFunc: ([T], [T]) -> T,
expected expectedFunc: ([T], [T]) -> T,
accuracy: T,
file: StaticString = #file,
line: UInt = #line
) where T: ExpressibleByFloatLiteral & FloatingPoint {
let actual = actualFunc(lhs, rhs)
let expected = expectedFunc(lhs, rhs)
XCTAssertEqual(actual, expected, accuracy: accuracy, file: file, line: line)
}
}