forked from Open-CT/openbrain
68 lines
1.4 KiB
Go
68 lines
1.4 KiB
Go
package object
|
|
|
|
import (
|
|
"fmt"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/muesli/clusters"
|
|
"github.com/muesli/kmeans"
|
|
"github.com/openbrainorg/openbrain/util"
|
|
)
|
|
|
|
func fa2Str(floatArray []float64) string {
|
|
sData := []string{}
|
|
for _, f := range floatArray {
|
|
sData = append(sData, fmt.Sprintf("%f", f))
|
|
}
|
|
return strings.Join(sData, "|")
|
|
}
|
|
|
|
func runKmeans(vectors []*Vector, clusterNumber int) {
|
|
vectorMap := map[string]*Vector{}
|
|
|
|
var d clusters.Observations
|
|
for _, vector := range vectors {
|
|
if len(vector.Data) == 0 {
|
|
continue
|
|
}
|
|
|
|
dataKey := vector.GetDataKey()
|
|
vectorMap[dataKey] = vector
|
|
|
|
d = append(d, clusters.Coordinates(vector.Data))
|
|
}
|
|
|
|
km := kmeans.New()
|
|
cs, err := km.Partition(d, clusterNumber)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
for i, c := range cs {
|
|
fmt.Printf("Centered at x: %.2f y: %.2f\n", c.Center[0], c.Center[1])
|
|
fmt.Printf("Matching data points: %+v\n\n", c.Observations)
|
|
|
|
color := util.GetRandomColor()
|
|
for _, observation := range c.Observations {
|
|
floatArray := observation.Coordinates()
|
|
dataKey := fa2Str(floatArray)
|
|
|
|
vector, ok := vectorMap[dataKey]
|
|
if !ok {
|
|
panic(fmt.Errorf("vectorMap vector not found, dataKey = %s", dataKey))
|
|
}
|
|
vector.Category = strconv.Itoa(i)
|
|
vector.Color = color
|
|
}
|
|
}
|
|
}
|
|
|
|
func updateWordsetVectorCategories(owner string, wordsetName string) {
|
|
wordset := getWordset(owner, wordsetName)
|
|
|
|
runKmeans(wordset.Vectors, 100)
|
|
|
|
UpdateWordset(wordset.GetId(), wordset)
|
|
}
|