forked from xtdrone/XTDrone
130 lines
3.4 KiB
C++
130 lines
3.4 KiB
C++
//
|
|
// Academic License - for use in teaching, academic research, and meeting
|
|
// course requirements at degree granting institutions only. Not for
|
|
// government, commercial, or other organizational use.
|
|
//
|
|
// File: rt_nonfinite.cpp
|
|
//
|
|
// Code generated for Simulink model 'obstacleStopper'.
|
|
//
|
|
// Model version : 1.86
|
|
// Simulink Coder version : 9.0 (R2018b) 24-May-2018
|
|
// C/C++ source code generated on : Fri May 24 15:32:42 2019
|
|
//
|
|
// Target selection: ert.tlc
|
|
// Embedded hardware selection: Generic->Unspecified (assume 32-bit Generic)
|
|
// Code generation objectives: Unspecified
|
|
// Validation result: Not run
|
|
//
|
|
|
|
//
|
|
// Abstract:
|
|
// Function to initialize non-finites,
|
|
// (Inf, NaN and -Inf).
|
|
#include "rt_nonfinite.h"
|
|
#include "rtGetNaN.h"
|
|
#include "rtGetInf.h"
|
|
#define NumBitsPerChar 8U
|
|
|
|
extern "C" {
|
|
real_T rtInf;
|
|
real_T rtMinusInf;
|
|
real_T rtNaN;
|
|
real32_T rtInfF;
|
|
real32_T rtMinusInfF;
|
|
real32_T rtNaNF;
|
|
}
|
|
extern "C"
|
|
{
|
|
//
|
|
// Initialize the rtInf, rtMinusInf, and rtNaN needed by the
|
|
// generated code. NaN is initialized as non-signaling. Assumes IEEE.
|
|
//
|
|
void rt_InitInfAndNaN(size_t realSize)
|
|
{
|
|
(void) (realSize);
|
|
rtNaN = rtGetNaN();
|
|
rtNaNF = rtGetNaNF();
|
|
rtInf = rtGetInf();
|
|
rtInfF = rtGetInfF();
|
|
rtMinusInf = rtGetMinusInf();
|
|
rtMinusInfF = rtGetMinusInfF();
|
|
}
|
|
|
|
// Test if value is infinite
|
|
boolean_T rtIsInf(real_T value)
|
|
{
|
|
return (boolean_T)((value==rtInf || value==rtMinusInf) ? 1U : 0U);
|
|
}
|
|
|
|
// Test if single-precision value is infinite
|
|
boolean_T rtIsInfF(real32_T value)
|
|
{
|
|
return (boolean_T)(((value)==rtInfF || (value)==rtMinusInfF) ? 1U : 0U);
|
|
}
|
|
|
|
// Test if value is not a number
|
|
boolean_T rtIsNaN(real_T value)
|
|
{
|
|
boolean_T result = (boolean_T) 0;
|
|
size_t bitsPerReal = sizeof(real_T) * (NumBitsPerChar);
|
|
if (bitsPerReal == 32U) {
|
|
result = rtIsNaNF((real32_T)value);
|
|
} else {
|
|
uint16_T one = 1U;
|
|
enum {
|
|
LittleEndian,
|
|
BigEndian
|
|
} machByteOrder = (*((uint8_T *) &one) == 1U) ? LittleEndian : BigEndian;
|
|
switch (machByteOrder) {
|
|
case LittleEndian:
|
|
{
|
|
union {
|
|
LittleEndianIEEEDouble bitVal;
|
|
real_T fltVal;
|
|
} tmpVal;
|
|
|
|
tmpVal.fltVal = value;
|
|
result = (boolean_T)((tmpVal.bitVal.words.wordH & 0x7FF00000) ==
|
|
0x7FF00000 &&
|
|
( (tmpVal.bitVal.words.wordH & 0x000FFFFF) != 0 ||
|
|
(tmpVal.bitVal.words.wordL != 0) ));
|
|
break;
|
|
}
|
|
|
|
case BigEndian:
|
|
{
|
|
union {
|
|
BigEndianIEEEDouble bitVal;
|
|
real_T fltVal;
|
|
} tmpVal;
|
|
|
|
tmpVal.fltVal = value;
|
|
result = (boolean_T)((tmpVal.bitVal.words.wordH & 0x7FF00000) ==
|
|
0x7FF00000 &&
|
|
( (tmpVal.bitVal.words.wordH & 0x000FFFFF) != 0 ||
|
|
(tmpVal.bitVal.words.wordL != 0) ));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Test if single-precision value is not a number
|
|
boolean_T rtIsNaNF(real32_T value)
|
|
{
|
|
IEEESingle tmp;
|
|
tmp.wordL.wordLreal = value;
|
|
return (boolean_T)( (tmp.wordL.wordLuint & 0x7F800000) == 0x7F800000 &&
|
|
(tmp.wordL.wordLuint & 0x007FFFFF) != 0 );
|
|
}
|
|
}
|
|
|
|
//
|
|
// File trailer for generated code.
|
|
//
|
|
// [EOF]
|
|
//
|