tensorlayer3/tests/pending/test_layers_time_distribute...

69 lines
1.8 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorlayer as tl
from tests.utils import CustomTestCase
def model(x, is_train=True, reuse=False, name_scope="env1"):
with tf.variable_scope(name_scope, reuse=reuse):
net = tl.layers.InputLayer(x, name='input')
net = tl.layers.TimeDistributedLayer(
net, layer_class=tl.layers.DenseLayer, args={
'n_units': 50,
'name': 'dense'
}, name='time_dense'
)
return net
class Layer_Time_Distributed_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
batch_size = 32
timestep = 20
input_dim = 100
cls.x = tf.placeholder(dtype=tf.float32, shape=[batch_size, timestep, input_dim], name="encode_seqs")
net = model(cls.x, is_train=True, reuse=False)
cls.net_shape = net.outputs.get_shape().as_list()
cls.n_params = net.count_params()
net.print_params(False)
@classmethod
def tearDownClass(cls):
tf.reset_default_graph()
def test_net_shape(self):
self.assertEqual(self.net_shape, [32, 20, 50])
def test_net_n_params(self):
self.assertEqual(self.n_params, 5050)
def test_reuse(self):
with self.assertNotRaises(Exception):
model(self.x, is_train=True, reuse=False, name_scope="env2")
model(self.x, is_train=False, reuse=True, name_scope="env2")
with self.assertRaises(Exception):
model(self.x, is_train=True, reuse=False) # Already defined model with the same var_scope
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.DEBUG)
tl.logging.set_verbosity(tl.logging.DEBUG)
unittest.main()