tensorlayer3/tensorlayer/prepro.py

4115 lines
136 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import copy
import math
import random
import threading
import time
import numpy as np
import PIL
import scipy
import scipy.ndimage as ndi
import skimage
from scipy import linalg
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import map_coordinates
from six.moves import range
from skimage import exposure, transform
from skimage.morphology import binary_dilation as _binary_dilation
from skimage.morphology import binary_erosion as _binary_erosion
from skimage.morphology import disk
from skimage.morphology import erosion as _erosion
from skimage.transform import resize
import tensorlayer as tl
from tensorlayer.lazy_imports import LazyImport
cv2 = LazyImport("cv2")
# linalg https://docs.scipy.org/doc/scipy/reference/linalg.html
# ndimage https://docs.scipy.org/doc/scipy/reference/ndimage.html
__all__ = [
'threading_data',
'affine_rotation_matrix',
'affine_horizontal_flip_matrix',
'affine_shift_matrix',
'affine_shear_matrix',
'affine_zoom_matrix',
'affine_respective_zoom_matrix',
'transform_matrix_offset_center',
'affine_transform',
'affine_transform_cv2',
'affine_transform_keypoints',
'projective_transform_by_points',
'rotation',
'rotation_multi',
'crop',
'crop_multi',
'flip_axis',
'flip_axis_multi',
'shift',
'shift_multi',
'shear',
'shear_multi',
'shear2',
'shear_multi2',
'swirl',
'swirl_multi',
'elastic_transform',
'elastic_transform_multi',
'zoom',
'respective_zoom',
'zoom_multi',
'brightness',
'brightness_multi',
'illumination',
'rgb_to_hsv',
'hsv_to_rgb',
'adjust_hue',
'imresize',
'pixel_value_scale',
'samplewise_norm',
'featurewise_norm',
'get_zca_whitening_principal_components_img',
'zca_whitening',
'channel_shift',
'channel_shift_multi',
'drop',
'array_to_img',
'find_contours',
'pt2map',
'binary_dilation',
'dilation',
'binary_erosion',
'erosion',
'obj_box_coords_rescale',
'obj_box_coord_rescale',
'obj_box_coord_scale_to_pixelunit',
'obj_box_coord_centroid_to_upleft_butright',
'obj_box_coord_upleft_butright_to_centroid',
'obj_box_coord_centroid_to_upleft',
'obj_box_coord_upleft_to_centroid',
'parse_darknet_ann_str_to_list',
'parse_darknet_ann_list_to_cls_box',
'obj_box_left_right_flip',
'obj_box_imresize',
'obj_box_crop',
'obj_box_shift',
'obj_box_zoom',
'pad_sequences',
'remove_pad_sequences',
'process_sequences',
'sequences_add_start_id',
'sequences_add_end_id',
'sequences_add_end_id_after_pad',
'sequences_get_mask',
'keypoint_random_crop',
'keypoint_resize_random_crop',
'keypoint_random_rotate',
'keypoint_random_flip',
'keypoint_random_resize',
'keypoint_random_resize_shortestedge',
]
def threading_data(data=None, fn=None, thread_count=None, **kwargs):
"""Process a batch of data by given function by threading.
Usually be used for data augmentation.
Parameters
-----------
data : numpy.array or others
The data to be processed.
thread_count : int
The number of threads to use.
fn : function
The function for data processing.
more args : the args for `fn`
Ssee Examples below.
Examples
--------
Process images.
>>> images, _, _, _ = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3))
>>> images = tl.prepro.threading_data(images[0:32], tl.prepro.zoom, zoom_range=[0.5, 1])
Customized image preprocessing function.
>>> def distort_img(x):
>>> x = tl.prepro.flip_axis(x, axis=0, is_random=True)
>>> x = tl.prepro.flip_axis(x, axis=1, is_random=True)
>>> x = tl.prepro.crop(x, 100, 100, is_random=True)
>>> return x
>>> images = tl.prepro.threading_data(images, distort_img)
Process images and masks together (Usually be used for image segmentation).
>>> X, Y --> [batch_size, row, col, 1]
>>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], tl.prepro.zoom_multi, zoom_range=[0.5, 1], is_random=True)
data --> [batch_size, 2, row, col, 1]
>>> X_, Y_ = data.transpose((1,0,2,3,4))
X_, Y_ --> [batch_size, row, col, 1]
>>> tl.vis.save_image(X_, 'images.png')
>>> tl.vis.save_image(Y_, 'masks.png')
Process images and masks together by using ``thread_count``.
>>> X, Y --> [batch_size, row, col, 1]
>>> data = tl.prepro.threading_data(X, tl.prepro.zoom_multi, 8, zoom_range=[0.5, 1], is_random=True)
data --> [batch_size, 2, row, col, 1]
>>> X_, Y_ = data.transpose((1,0,2,3,4))
X_, Y_ --> [batch_size, row, col, 1]
>>> tl.vis.save_image(X_, 'after.png')
>>> tl.vis.save_image(Y_, 'before.png')
Customized function for processing images and masks together.
>>> def distort_img(data):
>>> x, y = data
>>> x, y = tl.prepro.flip_axis_multi([x, y], axis=0, is_random=True)
>>> x, y = tl.prepro.flip_axis_multi([x, y], axis=1, is_random=True)
>>> x, y = tl.prepro.crop_multi([x, y], 100, 100, is_random=True)
>>> return x, y
>>> X, Y --> [batch_size, row, col, channel]
>>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], distort_img)
>>> X_, Y_ = data.transpose((1,0,2,3,4))
Returns
-------
list or numpyarray
The processed results.
References
----------
- `python queue <https://pymotw.com/2/Queue/index.html#module-Queue>`__
- `run with limited queue <http://effbot.org/librarybook/queue.htm>`__
"""
def apply_fn(results, i, data, kwargs):
results[i] = fn(data, **kwargs)
if thread_count is None:
results = [None] * len(data)
threads = []
# for i in range(len(data)):
# t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs))
for i, d in enumerate(data):
t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, d, kwargs))
t.start()
threads.append(t)
else:
divs = np.linspace(0, len(data), thread_count + 1)
divs = np.round(divs).astype(int)
results = [None] * thread_count
threads = []
for i in range(thread_count):
t = threading.Thread(
name='threading_and_return', target=apply_fn, args=(results, i, data[divs[i]:divs[i + 1]], kwargs)
)
t.start()
threads.append(t)
for t in threads:
t.join()
if thread_count is None:
try:
return np.asarray(results)
except Exception:
return results
else:
return np.concatenate(results)
def affine_rotation_matrix(angle=(-20, 20)):
"""Create an affine transform matrix for image rotation.
NOTE: In OpenCV, x is width and y is height.
Parameters
-----------
angle : int/float or tuple of two int/float
Degree to rotate, usually -180 ~ 180.
- int/float, a fixed angle.
- tuple of 2 floats/ints, randomly sample a value as the angle between these 2 values.
Returns
-------
numpy.array
An affine transform matrix.
"""
if isinstance(angle, tuple):
theta = np.pi / 180 * np.random.uniform(angle[0], angle[1])
else:
theta = np.pi / 180 * angle
rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0], \
[-np.sin(theta), np.cos(theta), 0], \
[0, 0, 1]])
return rotation_matrix
def affine_horizontal_flip_matrix(prob=0.5):
"""Create an affine transformation matrix for image horizontal flipping.
NOTE: In OpenCV, x is width and y is height.
Parameters
----------
prob : float
Probability to flip the image. 1.0 means always flip.
Returns
-------
numpy.array
An affine transform matrix.
"""
factor = np.random.uniform(0, 1)
if prob >= factor:
filp_matrix = np.array([[ -1. , 0., 0. ], \
[ 0., 1., 0. ], \
[ 0., 0., 1. ]])
return filp_matrix
else:
filp_matrix = np.array([[ 1. , 0., 0. ], \
[ 0., 1., 0. ], \
[ 0., 0., 1. ]])
return filp_matrix
def affine_vertical_flip_matrix(prob=0.5):
"""Create an affine transformation for image vertical flipping.
NOTE: In OpenCV, x is width and y is height.
Parameters
----------
prob : float
Probability to flip the image. 1.0 means always flip.
Returns
-------
numpy.array
An affine transform matrix.
"""
factor = np.random.uniform(0, 1)
if prob >= factor:
filp_matrix = np.array([[ 1. , 0., 0. ], \
[ 0., -1., 0. ], \
[ 0., 0., 1. ]])
return filp_matrix
else:
filp_matrix = np.array([[ 1. , 0., 0. ], \
[ 0., 1., 0. ], \
[ 0., 0., 1. ]])
return filp_matrix
def affine_shift_matrix(wrg=(-0.1, 0.1), hrg=(-0.1, 0.1), w=200, h=200):
"""Create an affine transform matrix for image shifting.
NOTE: In OpenCV, x is width and y is height.
Parameters
-----------
wrg : float or tuple of floats
Range to shift on width axis, -1 ~ 1.
- float, a fixed distance.
- tuple of 2 floats, randomly sample a value as the distance between these 2 values.
hrg : float or tuple of floats
Range to shift on height axis, -1 ~ 1.
- float, a fixed distance.
- tuple of 2 floats, randomly sample a value as the distance between these 2 values.
w, h : int
The width and height of the image.
Returns
-------
numpy.array
An affine transform matrix.
"""
if isinstance(wrg, tuple):
tx = np.random.uniform(wrg[0], wrg[1]) * w
else:
tx = wrg * w
if isinstance(hrg, tuple):
ty = np.random.uniform(hrg[0], hrg[1]) * h
else:
ty = hrg * h
shift_matrix = np.array([[1, 0, tx], \
[0, 1, ty], \
[0, 0, 1]])
return shift_matrix
def affine_shear_matrix(x_shear=(-0.1, 0.1), y_shear=(-0.1, 0.1)):
"""Create affine transform matrix for image shearing.
NOTE: In OpenCV, x is width and y is height.
Parameters
-----------
shear : tuple of two floats
Percentage of shears for width and height directions.
Returns
-------
numpy.array
An affine transform matrix.
"""
# if len(shear) != 2:
# raise AssertionError(
# "shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?"
# )
# if isinstance(shear, tuple):
# shear = list(shear)
# if is_random:
# shear[0] = np.random.uniform(-shear[0], shear[0])
# shear[1] = np.random.uniform(-shear[1], shear[1])
if isinstance(x_shear, tuple):
x_shear = np.random.uniform(x_shear[0], x_shear[1])
if isinstance(y_shear, tuple):
y_shear = np.random.uniform(y_shear[0], y_shear[1])
shear_matrix = np.array([[1, x_shear, 0], \
[y_shear, 1, 0], \
[0, 0, 1]])
return shear_matrix
def affine_zoom_matrix(zoom_range=(0.8, 1.1)):
"""Create an affine transform matrix for zooming/scaling an image's height and width.
OpenCV format, x is width.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
zoom_range : float or tuple of 2 floats
The zooming/scaling ratio, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between these 2 values.
Returns
-------
numpy.array
An affine transform matrix.
"""
if isinstance(zoom_range, (float, int)):
scale = zoom_range
elif isinstance(zoom_range, tuple):
scale = np.random.uniform(zoom_range[0], zoom_range[1])
else:
raise Exception("zoom_range: float or tuple of 2 floats")
zoom_matrix = np.array([[scale, 0, 0], \
[0, scale, 0], \
[0, 0, 1]])
return zoom_matrix
def affine_respective_zoom_matrix(w_range=0.8, h_range=1.1):
"""Get affine transform matrix for zooming/scaling that height and width are changed independently.
OpenCV format, x is width.
Parameters
-----------
w_range : float or tuple of 2 floats
The zooming/scaling ratio of width, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
h_range : float or tuple of 2 floats
The zooming/scaling ratio of height, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
Returns
-------
numpy.array
An affine transform matrix.
"""
if isinstance(h_range, (float, int)):
zy = h_range
elif isinstance(h_range, tuple):
zy = np.random.uniform(h_range[0], h_range[1])
else:
raise Exception("h_range: float or tuple of 2 floats")
if isinstance(w_range, (float, int)):
zx = w_range
elif isinstance(w_range, tuple):
zx = np.random.uniform(w_range[0], w_range[1])
else:
raise Exception("w_range: float or tuple of 2 floats")
zoom_matrix = np.array([[zx, 0, 0], \
[0, zy, 0], \
[0, 0, 1]])
return zoom_matrix
# affine transform
def transform_matrix_offset_center(matrix, y, x):
"""Convert the matrix from Cartesian coordinates (the origin in the middle of image) to Image coordinates (the origin on the top-left of image).
Parameters
----------
matrix : numpy.array
Transform matrix.
x and y : 2 int
Size of image.
Returns
-------
numpy.array
The transform matrix.
Examples
--------
- See ``tl.prepro.rotation``, ``tl.prepro.shear``, ``tl.prepro.zoom``.
"""
o_x = (x - 1) / 2.0
o_y = (y - 1) / 2.0
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
def affine_transform(x, transform_matrix, channel_index=2, fill_mode='nearest', cval=0., order=1):
"""Return transformed images by given an affine matrix in Scipy format (x is height).
Parameters
----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
transform_matrix : numpy.array
Transform matrix (offset center), can be generated by ``transform_matrix_offset_center``
channel_index : int
Index of channel, default 2.
fill_mode : str
Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
cval : float
Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0
order : int
The order of interpolation. The order has to be in the range 0-5:
- 0 Nearest-neighbor
- 1 Bi-linear (default)
- 2 Bi-quadratic
- 3 Bi-cubic
- 4 Bi-quartic
- 5 Bi-quintic
- `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
Returns
-------
numpy.array
A processed image.
Examples
--------
>>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False)
>>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8)
>>> M_combined = M_shear.dot(M_zoom)
>>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, h, w)
>>> result = tl.prepro.affine_transform(image, transform_matrix)
"""
# transform_matrix = transform_matrix_offset_center()
# asdihasid
# asd
x = np.rollaxis(x, channel_index, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [
ndi.interpolation.affine_transform(
x_channel, final_affine_matrix, final_offset, order=order, mode=fill_mode, cval=cval
) for x_channel in x
]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_index + 1)
return x
apply_transform = affine_transform
def affine_transform_cv2(x, transform_matrix, flags=None, border_mode='constant'):
"""Return transformed images by given an affine matrix in OpenCV format (x is width). (Powered by OpenCV2, faster than ``tl.prepro.affine_transform``)
Parameters
----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
transform_matrix : numpy.array
A transform matrix, OpenCV format.
border_mode : str
- `constant`, pad the image with a constant value (i.e. black or 0)
- `replicate`, the row or column at the very edge of the original is replicated to the extra border.
Examples
--------
>>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False)
>>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8)
>>> M_combined = M_shear.dot(M_zoom)
>>> result = tl.prepro.affine_transform_cv2(image, M_combined)
"""
rows, cols = x.shape[0], x.shape[1]
if flags is None:
flags = cv2.INTER_AREA
if border_mode is 'constant':
border_mode = cv2.BORDER_CONSTANT
elif border_mode is 'replicate':
border_mode = cv2.BORDER_REPLICATE
else:
raise Exception("unsupport border_mode, check cv.BORDER_ for more details.")
return cv2.warpAffine(x, transform_matrix[0:2,:], \
(cols,rows), flags=flags, borderMode=border_mode)
def affine_transform_keypoints(coords_list, transform_matrix):
"""Transform keypoint coordinates according to a given affine transform matrix.
OpenCV format, x is width.
Note that, for pose estimation task, flipping requires maintaining the left and right body information.
We should not flip the left and right body, so please use ``tl.prepro.keypoint_random_flip``.
Parameters
-----------
coords_list : list of list of tuple/list
The coordinates
e.g., the keypoint coordinates of every person in an image.
transform_matrix : numpy.array
Transform matrix, OpenCV format.
Examples
---------
>>> # 1. get all affine transform matrices
>>> M_rotate = tl.prepro.affine_rotation_matrix(angle=20)
>>> M_flip = tl.prepro.affine_horizontal_flip_matrix(prob=1)
>>> # 2. combine all affine transform matrices to one matrix
>>> M_combined = dot(M_flip).dot(M_rotate)
>>> # 3. transfrom the matrix from Cartesian coordinate (the origin in the middle of image)
>>> # to Image coordinate (the origin on the top-left of image)
>>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, x=w, y=h)
>>> # 4. then we can transfrom the image once for all transformations
>>> result = tl.prepro.affine_transform_cv2(image, transform_matrix) # 76 times faster
>>> # 5. transform keypoint coordinates
>>> coords = [[(50, 100), (100, 100), (100, 50), (200, 200)], [(250, 50), (200, 50), (200, 100)]]
>>> coords_result = tl.prepro.affine_transform_keypoints(coords, transform_matrix)
"""
coords_result_list = []
for coords in coords_list:
coords = np.asarray(coords)
coords = coords.transpose([1, 0])
coords = np.insert(coords, 2, 1, axis=0)
# print(coords)
# print(transform_matrix)
coords_result = np.matmul(transform_matrix, coords)
coords_result = coords_result[0:2, :].transpose([1, 0])
coords_result_list.append(coords_result)
return coords_result_list
def projective_transform_by_points(
x, src, dst, map_args=None, output_shape=None, order=1, mode='constant', cval=0.0, clip=True, preserve_range=False
):
"""Projective transform by given coordinates, usually 4 coordinates.
see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
src : list or numpy
The original coordinates, usually 4 coordinates of (width, height).
dst : list or numpy
The coordinates after transformation, the number of coordinates is the same with src.
map_args : dictionary or None
Keyword arguments passed to inverse map.
output_shape : tuple of 2 int
Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified.
order : int
The order of interpolation. The order has to be in the range 0-5:
- 0 Nearest-neighbor
- 1 Bi-linear (default)
- 2 Bi-quadratic
- 3 Bi-cubic
- 4 Bi-quartic
- 5 Bi-quintic
mode : str
One of `constant` (default), `edge`, `symmetric`, `reflect` or `wrap`.
Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad.
cval : float
Used in conjunction with mode `constant`, the value outside the image boundaries.
clip : boolean
Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range.
preserve_range : boolean
Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float.
Returns
-------
numpy.array
A processed image.
Examples
--------
Assume X is an image from CIFAR-10, i.e. shape == (32, 32, 3)
>>> src = [[0,0],[0,32],[32,0],[32,32]] # [w, h]
>>> dst = [[10,10],[0,32],[32,0],[32,32]]
>>> x = tl.prepro.projective_transform_by_points(X, src, dst)
References
-----------
- `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__
- `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`__
"""
if map_args is None:
map_args = {}
# if type(src) is list:
if isinstance(src, list): # convert to numpy
src = np.array(src)
# if type(dst) is list:
if isinstance(dst, list):
dst = np.array(dst)
if np.max(x) > 1: # convert to [0, 1]
x = x / 255
m = transform.ProjectiveTransform()
m.estimate(dst, src)
warped = transform.warp(
x, m, map_args=map_args, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip,
preserve_range=preserve_range
)
return warped
# rotate
def rotation(
x, rg=20, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1
):
"""Rotate an image randomly or non-randomly.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
rg : int or float
Degree to rotate, usually 0 ~ 180.
is_random : boolean
If True, randomly rotate. Default is False
row_index col_index and channel_index : int
Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0).
fill_mode : str
Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
cval : float
Value used for points outside the boundaries of the input if mode=`constant`. Default is 0.0
order : int
The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
Returns
-------
numpy.array
A processed image.
Examples
---------
>>> x --> [row, col, 1]
>>> x = tl.prepro.rotation(x, rg=40, is_random=False)
>>> tl.vis.save_image(x, 'im.png')
"""
if is_random:
theta = np.pi / 180 * np.random.uniform(-rg, rg)
else:
theta = np.pi / 180 * rg
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
h, w = x.shape[row_index], x.shape[col_index]
transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order)
return x
def rotation_multi(
x, rg=20, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1
):
"""Rotate multiple images with the same arguments, randomly or non-randomly.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.rotation``.
Returns
-------
numpy.array
A list of processed images.
Examples
--------
>>> x, y --> [row, col, 1] greyscale
>>> x, y = tl.prepro.rotation_multi([x, y], rg=90, is_random=False)
"""
if is_random:
theta = np.pi / 180 * np.random.uniform(-rg, rg)
else:
theta = np.pi / 180 * rg
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
h, w = x[0].shape[row_index], x[0].shape[col_index]
transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
results = []
for data in x:
results.append(affine_transform(data, transform_matrix, channel_index, fill_mode, cval, order))
return np.asarray(results)
# crop
def crop(x, wrg, hrg, is_random=False, row_index=0, col_index=1):
"""Randomly or centrally crop an image.
Parameters
----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
wrg : int
Size of width.
hrg : int
Size of height.
is_random : boolean,
If True, randomly crop, else central crop. Default is False.
row_index: int
index of row.
col_index: int
index of column.
Returns
-------
numpy.array
A processed image.
"""
h, w = x.shape[row_index], x.shape[col_index]
if (h < hrg) or (w < wrg):
raise AssertionError("The size of cropping should smaller than or equal to the original image")
if is_random:
h_offset = int(np.random.uniform(0, h - hrg))
w_offset = int(np.random.uniform(0, w - wrg))
# tl.logging.info(h_offset, w_offset, x[h_offset: hrg+h_offset ,w_offset: wrg+w_offset].shape)
return x[h_offset:hrg + h_offset, w_offset:wrg + w_offset]
else: # central crop
h_offset = int(np.floor((h - hrg) / 2.))
w_offset = int(np.floor((w - wrg) / 2.))
h_end = h_offset + hrg
w_end = w_offset + wrg
return x[h_offset:h_end, w_offset:w_end]
# old implementation
# h_offset = (h - hrg)/2
# w_offset = (w - wrg)/2
# tl.logging.info(x[h_offset: h-h_offset ,w_offset: w-w_offset].shape)
# return x[h_offset: h-h_offset ,w_offset: w-w_offset]
# central crop
def crop_multi(x, wrg, hrg, is_random=False, row_index=0, col_index=1):
"""Randomly or centrally crop multiple images.
Parameters
----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.crop``.
Returns
-------
numpy.array
A list of processed images.
"""
h, w = x[0].shape[row_index], x[0].shape[col_index]
if (h < hrg) or (w < wrg):
raise AssertionError("The size of cropping should smaller than or equal to the original image")
if is_random:
h_offset = int(np.random.uniform(0, h - hrg))
w_offset = int(np.random.uniform(0, w - wrg))
results = []
for data in x:
results.append(data[h_offset:hrg + h_offset, w_offset:wrg + w_offset])
return np.asarray(results)
else:
# central crop
h_offset = int(np.floor((h - hrg) / 2.))
w_offset = int(np.floor((w - wrg) / 2.))
results = []
for data in x:
results.append(data[h_offset:h - h_offset, w_offset:w - w_offset])
return np.asarray(results)
# flip
def flip_axis(x, axis=1, is_random=False):
"""Flip the axis of an image, such as flip left and right, up and down, randomly or non-randomly,
Parameters
----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
axis : int
Which axis to flip.
- 0, flip up and down
- 1, flip left and right
- 2, flip channel
is_random : boolean
If True, randomly flip. Default is False.
Returns
-------
numpy.array
A processed image.
"""
if is_random:
factor = np.random.uniform(-1, 1)
if factor > 0:
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
return x
else:
return x
else:
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
return x
def flip_axis_multi(x, axis, is_random=False):
"""Flip the axises of multiple images together, such as flip left and right, up and down, randomly or non-randomly,
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.flip_axis``.
Returns
-------
numpy.array
A list of processed images.
"""
if is_random:
factor = np.random.uniform(-1, 1)
if factor > 0:
# x = np.asarray(x).swapaxes(axis, 0)
# x = x[::-1, ...]
# x = x.swapaxes(0, axis)
# return x
results = []
for data in x:
data = np.asarray(data).swapaxes(axis, 0)
data = data[::-1, ...]
data = data.swapaxes(0, axis)
results.append(data)
return np.asarray(results)
else:
return np.asarray(x)
else:
# x = np.asarray(x).swapaxes(axis, 0)
# x = x[::-1, ...]
# x = x.swapaxes(0, axis)
# return x
results = []
for data in x:
data = np.asarray(data).swapaxes(axis, 0)
data = data[::-1, ...]
data = data.swapaxes(0, axis)
results.append(data)
return np.asarray(results)
# shift
def shift(
x, wrg=0.1, hrg=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0.,
order=1
):
"""Shift an image randomly or non-randomly.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
wrg : float
Percentage of shift in axis x, usually -0.25 ~ 0.25.
hrg : float
Percentage of shift in axis y, usually -0.25 ~ 0.25.
is_random : boolean
If True, randomly shift. Default is False.
row_index col_index and channel_index : int
Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0).
fill_mode : str
Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
cval : float
Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0.
order : int
The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
Returns
-------
numpy.array
A processed image.
"""
h, w = x.shape[row_index], x.shape[col_index]
if is_random:
tx = np.random.uniform(-hrg, hrg) * h
ty = np.random.uniform(-wrg, wrg) * w
else:
tx, ty = hrg * h, wrg * w
translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
transform_matrix = translation_matrix # no need to do offset
x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order)
return x
def shift_multi(
x, wrg=0.1, hrg=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0.,
order=1
):
"""Shift images with the same arguments, randomly or non-randomly.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.shift``.
Returns
-------
numpy.array
A list of processed images.
"""
h, w = x[0].shape[row_index], x[0].shape[col_index]
if is_random:
tx = np.random.uniform(-hrg, hrg) * h
ty = np.random.uniform(-wrg, wrg) * w
else:
tx, ty = hrg * h, wrg * w
translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
transform_matrix = translation_matrix # no need to do offset
results = []
for data in x:
results.append(affine_transform(data, transform_matrix, channel_index, fill_mode, cval, order))
return np.asarray(results)
# shear
def shear(
x, intensity=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1
):
"""Shear an image randomly or non-randomly.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
intensity : float
Percentage of shear, usually -0.5 ~ 0.5 (is_random==True), 0 ~ 0.5 (is_random==False),
you can have a quick try by shear(X, 1).
is_random : boolean
If True, randomly shear. Default is False.
row_index col_index and channel_index : int
Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0).
fill_mode : str
Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
cval : float
Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0.
order : int
The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
Returns
-------
numpy.array
A processed image.
References
-----------
- `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__
"""
if is_random:
shear = np.random.uniform(-intensity, intensity)
else:
shear = intensity
shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]])
h, w = x.shape[row_index], x.shape[col_index]
transform_matrix = transform_matrix_offset_center(shear_matrix, h, w)
x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order)
return x
def shear_multi(
x, intensity=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1
):
"""Shear images with the same arguments, randomly or non-randomly.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.shear``.
Returns
-------
numpy.array
A list of processed images.
"""
if is_random:
shear = np.random.uniform(-intensity, intensity)
else:
shear = intensity
shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]])
h, w = x[0].shape[row_index], x[0].shape[col_index]
transform_matrix = transform_matrix_offset_center(shear_matrix, h, w)
results = []
for data in x:
results.append(affine_transform(data, transform_matrix, channel_index, fill_mode, cval, order))
return np.asarray(results)
def shear2(
x, shear=(0.1, 0.1), is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0.,
order=1
):
"""Shear an image randomly or non-randomly.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
shear : tuple of two floats
Percentage of shear for height and width direction (0, 1).
is_random : boolean
If True, randomly shear. Default is False.
row_index col_index and channel_index : int
Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0).
fill_mode : str
Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
cval : float
Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0.
order : int
The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
Returns
-------
numpy.array
A processed image.
References
-----------
- `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__
"""
if len(shear) != 2:
raise AssertionError(
"shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?"
)
if isinstance(shear, tuple):
shear = list(shear)
if is_random:
shear[0] = np.random.uniform(-shear[0], shear[0])
shear[1] = np.random.uniform(-shear[1], shear[1])
shear_matrix = np.array([[1, shear[0], 0], \
[shear[1], 1, 0], \
[0, 0, 1]])
h, w = x.shape[row_index], x.shape[col_index]
transform_matrix = transform_matrix_offset_center(shear_matrix, h, w)
x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order)
return x
def shear_multi2(
x, shear=(0.1, 0.1), is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0.,
order=1
):
"""Shear images with the same arguments, randomly or non-randomly.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.shear2``.
Returns
-------
numpy.array
A list of processed images.
"""
if len(shear) != 2:
raise AssertionError(
"shear should be tuple of 2 floats, or you want to use tl.prepro.shear_multi rather than tl.prepro.shear_multi2 ?"
)
if isinstance(shear, tuple):
shear = list(shear)
if is_random:
shear[0] = np.random.uniform(-shear[0], shear[0])
shear[1] = np.random.uniform(-shear[1], shear[1])
shear_matrix = np.array([[1, shear[0], 0], [shear[1], 1, 0], [0, 0, 1]])
h, w = x[0].shape[row_index], x[0].shape[col_index]
transform_matrix = transform_matrix_offset_center(shear_matrix, h, w)
results = []
for data in x:
results.append(affine_transform(data, transform_matrix, channel_index, fill_mode, cval, order))
return np.asarray(results)
# swirl
def swirl(
x, center=None, strength=1, radius=100, rotation=0, output_shape=None, order=1, mode='constant', cval=0, clip=True,
preserve_range=False, is_random=False
):
"""Swirl an image randomly or non-randomly, see `scikit-image swirl API <http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.swirl>`__
and `example <http://scikit-image.org/docs/dev/auto_examples/plot_swirl.html>`__.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
center : tuple or 2 int or None
Center coordinate of transformation (optional).
strength : float
The amount of swirling applied.
radius : float
The extent of the swirl in pixels. The effect dies out rapidly beyond radius.
rotation : float
Additional rotation applied to the image, usually [0, 360], relates to center.
output_shape : tuple of 2 int or None
Shape of the output image generated (height, width). By default the shape of the input image is preserved.
order : int, optional
The order of the spline interpolation, default is 1. The order has to be in the range 0-5. See skimage.transform.warp for detail.
mode : str
One of `constant` (default), `edge`, `symmetric` `reflect` and `wrap`.
Points outside the boundaries of the input are filled according to the given mode, with `constant` used as the default. Modes match the behaviour of numpy.pad.
cval : float
Used in conjunction with mode `constant`, the value outside the image boundaries.
clip : boolean
Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range.
preserve_range : boolean
Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float.
is_random : boolean,
If True, random swirl. Default is False.
- random center = [(0 ~ x.shape[0]), (0 ~ x.shape[1])]
- random strength = [0, strength]
- random radius = [1e-10, radius]
- random rotation = [-rotation, rotation]
Returns
-------
numpy.array
A processed image.
Examples
---------
>>> x --> [row, col, 1] greyscale
>>> x = tl.prepro.swirl(x, strength=4, radius=100)
"""
if radius == 0:
raise AssertionError("Invalid radius value")
rotation = np.pi / 180 * rotation
if is_random:
center_h = int(np.random.uniform(0, x.shape[0]))
center_w = int(np.random.uniform(0, x.shape[1]))
center = (center_h, center_w)
strength = np.random.uniform(0, strength)
radius = np.random.uniform(1e-10, radius)
rotation = np.random.uniform(-rotation, rotation)
max_v = np.max(x)
if max_v > 1: # Note: the input of this fn should be [-1, 1], rescale is required.
x = x / max_v
swirled = skimage.transform.swirl(
x, center=center, strength=strength, radius=radius, rotation=rotation, output_shape=output_shape, order=order,
mode=mode, cval=cval, clip=clip, preserve_range=preserve_range
)
if max_v > 1:
swirled = swirled * max_v
return swirled
def swirl_multi(
x, center=None, strength=1, radius=100, rotation=0, output_shape=None, order=1, mode='constant', cval=0, clip=True,
preserve_range=False, is_random=False
):
"""Swirl multiple images with the same arguments, randomly or non-randomly.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.swirl``.
Returns
-------
numpy.array
A list of processed images.
"""
if radius == 0:
raise AssertionError("Invalid radius value")
rotation = np.pi / 180 * rotation
if is_random:
center_h = int(np.random.uniform(0, x[0].shape[0]))
center_w = int(np.random.uniform(0, x[0].shape[1]))
center = (center_h, center_w)
strength = np.random.uniform(0, strength)
radius = np.random.uniform(1e-10, radius)
rotation = np.random.uniform(-rotation, rotation)
results = []
for data in x:
max_v = np.max(data)
if max_v > 1: # Note: the input of this fn should be [-1, 1], rescale is required.
data = data / max_v
swirled = skimage.transform.swirl(
data, center=center, strength=strength, radius=radius, rotation=rotation, output_shape=output_shape,
order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range
)
if max_v > 1:
swirled = swirled * max_v
results.append(swirled)
return np.asarray(results)
# elastic_transform
def elastic_transform(x, alpha, sigma, mode="constant", cval=0, is_random=False):
"""Elastic transformation for image as described in `[Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`__.
Parameters
-----------
x : numpy.array
A greyscale image.
alpha : float
Alpha value for elastic transformation.
sigma : float or sequence of float
The smaller the sigma, the more transformation. Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.
mode : str
See `scipy.ndimage.filters.gaussian_filter <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.filters.gaussian_filter.html>`__. Default is `constant`.
cval : float,
Used in conjunction with `mode` of `constant`, the value outside the image boundaries.
is_random : boolean
Default is False.
Returns
-------
numpy.array
A processed image.
Examples
---------
>>> x = tl.prepro.elastic_transform(x, alpha=x.shape[1]*3, sigma=x.shape[1]*0.07)
References
------------
- `Github <https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a>`__.
- `Kaggle <https://www.kaggle.com/pscion/ultrasound-nerve-segmentation/elastic-transform-for-data-augmentation-0878921a>`__
"""
if is_random is False:
random_state = np.random.RandomState(None)
else:
random_state = np.random.RandomState(int(time.time()))
#
is_3d = False
if len(x.shape) == 3 and x.shape[-1] == 1:
x = x[:, :, 0]
is_3d = True
elif len(x.shape) == 3 and x.shape[-1] != 1:
raise Exception("Only support greyscale image")
if len(x.shape) != 2:
raise AssertionError("input should be grey-scale image")
shape = x.shape
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha
x_, y_ = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
indices = np.reshape(x_ + dx, (-1, 1)), np.reshape(y_ + dy, (-1, 1))
if is_3d:
return map_coordinates(x, indices, order=1).reshape((shape[0], shape[1], 1))
else:
return map_coordinates(x, indices, order=1).reshape(shape)
def elastic_transform_multi(x, alpha, sigma, mode="constant", cval=0, is_random=False):
"""Elastic transformation for images as described in `[Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`__.
Parameters
-----------
x : list of numpy.array
List of greyscale images.
others : args
See ``tl.prepro.elastic_transform``.
Returns
-------
numpy.array
A list of processed images.
"""
if is_random is False:
random_state = np.random.RandomState(None)
else:
random_state = np.random.RandomState(int(time.time()))
shape = x[0].shape
if len(shape) == 3:
shape = (shape[0], shape[1])
new_shape = random_state.rand(*shape)
results = []
for data in x:
is_3d = False
if len(data.shape) == 3 and data.shape[-1] == 1:
data = data[:, :, 0]
is_3d = True
elif len(data.shape) == 3 and data.shape[-1] != 1:
raise Exception("Only support greyscale image")
if len(data.shape) != 2:
raise AssertionError("input should be grey-scale image")
dx = gaussian_filter((new_shape * 2 - 1), sigma, mode=mode, cval=cval) * alpha
dy = gaussian_filter((new_shape * 2 - 1), sigma, mode=mode, cval=cval) * alpha
x_, y_ = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
indices = np.reshape(x_ + dx, (-1, 1)), np.reshape(y_ + dy, (-1, 1))
# tl.logging.info(data.shape)
if is_3d:
results.append(map_coordinates(data, indices, order=1).reshape((shape[0], shape[1], 1)))
else:
results.append(map_coordinates(data, indices, order=1).reshape(shape))
return np.asarray(results)
# zoom
def zoom(x, zoom_range=(0.9, 1.1), flags=None, border_mode='constant'):
"""Zooming/Scaling a single image that height and width are changed together.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
zoom_range : float or tuple of 2 floats
The zooming/scaling ratio, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
border_mode : str
- `constant`, pad the image with a constant value (i.e. black or 0)
- `replicate`, the row or column at the very edge of the original is replicated to the extra border.
Returns
-------
numpy.array
A processed image.
"""
zoom_matrix = affine_zoom_matrix(zoom_range=zoom_range)
h, w = x.shape[0], x.shape[1]
transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w)
x = affine_transform_cv2(x, transform_matrix, flags=flags, border_mode=border_mode)
return x
def respective_zoom(x, h_range=(0.9, 1.1), w_range=(0.9, 1.1), flags=None, border_mode='constant'):
"""Zooming/Scaling a single image that height and width are changed independently.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
h_range : float or tuple of 2 floats
The zooming/scaling ratio of height, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
w_range : float or tuple of 2 floats
The zooming/scaling ratio of width, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
border_mode : str
- `constant`, pad the image with a constant value (i.e. black or 0)
- `replicate`, the row or column at the very edge of the original is replicated to the extra border.
Returns
-------
numpy.array
A processed image.
"""
zoom_matrix = affine_respective_zoom_matrix(h_range=h_range, w_range=w_range)
h, w = x.shape[0], x.shape[1]
transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w)
x = affine_transform_cv2(
x, transform_matrix, flags=flags, border_mode=border_mode
) #affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order)
return x
def zoom_multi(x, zoom_range=(0.9, 1.1), flags=None, border_mode='constant'):
"""Zoom in and out of images with the same arguments, randomly or non-randomly.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.zoom``.
Returns
-------
numpy.array
A list of processed images.
"""
zoom_matrix = affine_zoom_matrix(zoom_range=zoom_range)
results = []
for img in x:
h, w = x.shape[0], x.shape[1]
transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w)
results.append(affine_transform_cv2(x, transform_matrix, flags=flags, border_mode=border_mode))
return results
# image = tf.image.random_brightness(image, max_delta=32. / 255.)
# image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
# image = tf.image.random_hue(image, max_delta=0.032)
# image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
def brightness(x, gamma=1, gain=1, is_random=False):
"""Change the brightness of a single image, randomly or non-randomly.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
gamma : float
Non negative real number. Default value is 1.
- Small than 1 means brighter.
- If `is_random` is True, gamma in a range of (1-gamma, 1+gamma).
gain : float
The constant multiplier. Default value is 1.
is_random : boolean
If True, randomly change brightness. Default is False.
Returns
-------
numpy.array
A processed image.
References
-----------
- `skimage.exposure.adjust_gamma <http://scikit-image.org/docs/dev/api/skimage.exposure.html>`__
- `chinese blog <http://www.cnblogs.com/denny402/p/5124402.html>`__
"""
if is_random:
gamma = np.random.uniform(1 - gamma, 1 + gamma)
x = exposure.adjust_gamma(x, gamma, gain)
return x
def brightness_multi(x, gamma=1, gain=1, is_random=False):
"""Change the brightness of multiply images, randomly or non-randomly.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpyarray
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.brightness``.
Returns
-------
numpy.array
A list of processed images.
"""
if is_random:
gamma = np.random.uniform(1 - gamma, 1 + gamma)
results = []
for data in x:
results.append(exposure.adjust_gamma(data, gamma, gain))
return np.asarray(results)
def illumination(x, gamma=1., contrast=1., saturation=1., is_random=False):
"""Perform illumination augmentation for a single image, randomly or non-randomly.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
gamma : float
Change brightness (the same with ``tl.prepro.brightness``)
- if is_random=False, one float number, small than one means brighter, greater than one means darker.
- if is_random=True, tuple of two float numbers, (min, max).
contrast : float
Change contrast.
- if is_random=False, one float number, small than one means blur.
- if is_random=True, tuple of two float numbers, (min, max).
saturation : float
Change saturation.
- if is_random=False, one float number, small than one means unsaturation.
- if is_random=True, tuple of two float numbers, (min, max).
is_random : boolean
If True, randomly change illumination. Default is False.
Returns
-------
numpy.array
A processed image.
Examples
---------
Random
>>> x = tl.prepro.illumination(x, gamma=(0.5, 5.0), contrast=(0.3, 1.0), saturation=(0.7, 1.0), is_random=True)
Non-random
>>> x = tl.prepro.illumination(x, 0.5, 0.6, 0.8, is_random=False)
"""
if is_random:
if not (len(gamma) == len(contrast) == len(saturation) == 2):
raise AssertionError("if is_random = True, the arguments are (min, max)")
## random change brightness # small --> brighter
illum_settings = np.random.randint(0, 3) # 0-brighter, 1-darker, 2 keep normal
if illum_settings == 0: # brighter
gamma = np.random.uniform(gamma[0], 1.0) # (.5, 1.0)
elif illum_settings == 1: # darker
gamma = np.random.uniform(1.0, gamma[1]) # (1.0, 5.0)
else:
gamma = 1
im_ = brightness(x, gamma=gamma, gain=1, is_random=False)
# tl.logging.info("using contrast and saturation")
image = PIL.Image.fromarray(im_) # array -> PIL
contrast_adjust = PIL.ImageEnhance.Contrast(image)
image = contrast_adjust.enhance(np.random.uniform(contrast[0], contrast[1])) #0.3,0.9))
saturation_adjust = PIL.ImageEnhance.Color(image)
image = saturation_adjust.enhance(np.random.uniform(saturation[0], saturation[1])) # (0.7,1.0))
im_ = np.array(image) # PIL -> array
else:
im_ = brightness(x, gamma=gamma, gain=1, is_random=False)
image = PIL.Image.fromarray(im_) # array -> PIL
contrast_adjust = PIL.ImageEnhance.Contrast(image)
image = contrast_adjust.enhance(contrast)
saturation_adjust = PIL.ImageEnhance.Color(image)
image = saturation_adjust.enhance(saturation)
im_ = np.array(image) # PIL -> array
return np.asarray(im_)
def rgb_to_hsv(rgb):
"""Input RGB image [0~255] return HSV image [0~1].
Parameters
------------
rgb : numpy.array
An image with values between 0 and 255.
Returns
-------
numpy.array
A processed image.
"""
# Translated from source of colorsys.rgb_to_hsv
# r,g,b should be a numpy arrays with values between 0 and 255
# rgb_to_hsv returns an array of floats between 0.0 and 1.0.
rgb = rgb.astype('float')
hsv = np.zeros_like(rgb)
# in case an RGBA array was passed, just copy the A channel
hsv[..., 3:] = rgb[..., 3:]
r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2]
maxc = np.max(rgb[..., :3], axis=-1)
minc = np.min(rgb[..., :3], axis=-1)
hsv[..., 2] = maxc
mask = maxc != minc
hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask]
rc = np.zeros_like(r)
gc = np.zeros_like(g)
bc = np.zeros_like(b)
rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask]
gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask]
bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask]
hsv[..., 0] = np.select([r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc)
hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0
return hsv
def hsv_to_rgb(hsv):
"""Input HSV image [0~1] return RGB image [0~255].
Parameters
-------------
hsv : numpy.array
An image with values between 0.0 and 1.0
Returns
-------
numpy.array
A processed image.
"""
# Translated from source of colorsys.hsv_to_rgb
# h,s should be a numpy arrays with values between 0.0 and 1.0
# v should be a numpy array with values between 0.0 and 255.0
# hsv_to_rgb returns an array of uints between 0 and 255.
rgb = np.empty_like(hsv)
rgb[..., 3:] = hsv[..., 3:]
h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2]
i = (h * 6.0).astype('uint8')
f = (h * 6.0) - i
p = v * (1.0 - s)
q = v * (1.0 - s * f)
t = v * (1.0 - s * (1.0 - f))
i = i % 6
conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5]
rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v)
rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t)
rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p)
return rgb.astype('uint8')
def adjust_hue(im, hout=0.66, is_offset=True, is_clip=True, is_random=False):
"""Adjust hue of an RGB image.
This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the hue channel, converts back to RGB and then back to the original data type.
For TF, see `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__.and `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__.
Parameters
-----------
im : numpy.array
An image with values between 0 and 255.
hout : float
The scale value for adjusting hue.
- If is_offset is False, set all hue values to this value. 0 is red; 0.33 is green; 0.66 is blue.
- If is_offset is True, add this value as the offset to the hue channel.
is_offset : boolean
Whether `hout` is added on HSV as offset or not. Default is True.
is_clip : boolean
If HSV value smaller than 0, set to 0. Default is True.
is_random : boolean
If True, randomly change hue. Default is False.
Returns
-------
numpy.array
A processed image.
Examples
---------
Random, add a random value between -0.2 and 0.2 as the offset to every hue values.
>>> im_hue = tl.prepro.adjust_hue(image, hout=0.2, is_offset=True, is_random=False)
Non-random, make all hue to green.
>>> im_green = tl.prepro.adjust_hue(image, hout=0.66, is_offset=False, is_random=False)
References
-----------
- `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__.
- `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__.
- `StackOverflow: Changing image hue with python PIL <https://stackoverflow.com/questions/7274221/changing-image-hue-with-python-pil>`__.
"""
hsv = rgb_to_hsv(im)
if is_random:
hout = np.random.uniform(-hout, hout)
if is_offset:
hsv[..., 0] += hout
else:
hsv[..., 0] = hout
if is_clip:
hsv[..., 0] = np.clip(hsv[..., 0], 0, np.inf) # Hao : can remove green dots
rgb = hsv_to_rgb(hsv)
return rgb
# # contrast
# def constant(x, cutoff=0.5, gain=10, inv=False, is_random=False):
# # TODO
# x = exposure.adjust_sigmoid(x, cutoff=cutoff, gain=gain, inv=inv)
# return x
#
# def constant_multi():
# #TODO
# pass
def imresize(x, size=None, interp='bicubic', mode=None):
"""Resize an image by given output size and method.
Warning, this function will rescale the value to [0, 255].
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
size : list of 2 int or None
For height and width.
interp : str
Interpolation method for re-sizing (`nearest`, `lanczos`, `bilinear`, `bicubic` (default) or `cubic`).
mode : str
The PIL image mode (`P`, `L`, etc.) to convert image before resizing.
Returns
-------
numpy.array
A processed image.
References
------------
- `scipy.misc.imresize <https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imresize.html>`__
"""
if size is None:
size = [100, 100]
if x.shape[-1] == 1:
# greyscale
# x = scipy.misc.imresize(x[:, :, 0], size, interp=interp, mode=mode)
x = resize(x[:, :, 0], size)
return x[:, :, np.newaxis]
else:
# rgb, bgr, rgba
return resize(x, output_shape=size)
# return scipy.misc.imresize(x, size, interp=interp, mode=mode)
# value scale
def pixel_value_scale(im, val=0.9, clip=None, is_random=False):
"""Scales each value in the pixels of the image.
Parameters
-----------
im : numpy.array
An image.
val : float
The scale value for changing pixel value.
- If is_random=False, multiply this value with all pixels.
- If is_random=True, multiply a value between [1-val, 1+val] with all pixels.
clip : tuple of 2 numbers
The minimum and maximum value.
is_random : boolean
If True, see ``val``.
Returns
-------
numpy.array
A processed image.
Examples
----------
Random
>>> im = pixel_value_scale(im, 0.1, [0, 255], is_random=True)
Non-random
>>> im = pixel_value_scale(im, 0.9, [0, 255], is_random=False)
"""
clip = clip if clip is not None else (-np.inf, np.inf)
if is_random:
scale = 1 + np.random.uniform(-val, val)
im = im * scale
else:
im = im * val
if len(clip) == 2:
im = np.clip(im, clip[0], clip[1])
else:
raise Exception("clip : tuple of 2 numbers")
return im
# normailization
def samplewise_norm(
x, rescale=None, samplewise_center=False, samplewise_std_normalization=False, channel_index=2, epsilon=1e-7
):
"""Normalize an image by rescale, samplewise centering and samplewise centering in order.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
rescale : float
Rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation)
samplewise_center : boolean
If True, set each sample mean to 0.
samplewise_std_normalization : boolean
If True, divide each input by its std.
epsilon : float
A small position value for dividing standard deviation.
Returns
-------
numpy.array
A processed image.
Examples
--------
>>> x = samplewise_norm(x, samplewise_center=True, samplewise_std_normalization=True)
>>> print(x.shape, np.mean(x), np.std(x))
(160, 176, 1), 0.0, 1.0
Notes
------
When samplewise_center and samplewise_std_normalization are True.
- For greyscale image, every pixels are subtracted and divided by the mean and std of whole image.
- For RGB image, every pixels are subtracted and divided by the mean and std of this pixel i.e. the mean and std of a pixel is 0 and 1.
"""
if rescale:
x *= rescale
if x.shape[channel_index] == 1:
# greyscale
if samplewise_center:
x = x - np.mean(x)
if samplewise_std_normalization:
x = x / np.std(x)
return x
elif x.shape[channel_index] == 3:
# rgb
if samplewise_center:
x = x - np.mean(x, axis=channel_index, keepdims=True)
if samplewise_std_normalization:
x = x / (np.std(x, axis=channel_index, keepdims=True) + epsilon)
return x
else:
raise Exception("Unsupported channels %d" % x.shape[channel_index])
def featurewise_norm(x, mean=None, std=None, epsilon=1e-7):
"""Normalize every pixels by the same given mean and std, which are usually
compute from all examples.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
mean : float
Value for subtraction.
std : float
Value for division.
epsilon : float
A small position value for dividing standard deviation.
Returns
-------
numpy.array
A processed image.
"""
if mean:
x = x - mean
if std:
x = x / (std + epsilon)
return x
# whitening
def get_zca_whitening_principal_components_img(X):
"""Return the ZCA whitening principal components matrix.
Parameters
-----------
x : numpy.array
Batch of images with dimension of [n_example, row, col, channel] (default).
Returns
-------
numpy.array
A processed image.
"""
flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3]))
tl.logging.info("zca : computing sigma ..")
sigma = np.dot(flatX.T, flatX) / flatX.shape[0]
tl.logging.info("zca : computing U, S and V ..")
U, S, _ = linalg.svd(sigma) # USV
tl.logging.info("zca : computing principal components ..")
principal_components = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T)
return principal_components
def zca_whitening(x, principal_components):
"""Apply ZCA whitening on an image by given principal components matrix.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
principal_components : matrix
Matrix from ``get_zca_whitening_principal_components_img``.
Returns
-------
numpy.array
A processed image.
"""
flatx = np.reshape(x, (x.size))
# tl.logging.info(principal_components.shape, x.shape) # ((28160, 28160), (160, 176, 1))
# flatx = np.reshape(x, (x.shape))
# flatx = np.reshape(x, (x.shape[0], ))
# tl.logging.info(flatx.shape) # (160, 176, 1)
whitex = np.dot(flatx, principal_components)
x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2]))
return x
# developing
# def barrel_transform(x, intensity):
# # https://github.com/fchollet/keras/blob/master/keras/preprocessing/image.py
# # TODO
# pass
#
# def barrel_transform_multi(x, intensity):
# # https://github.com/fchollet/keras/blob/master/keras/preprocessing/image.py
# # TODO
# pass
# channel shift
def channel_shift(x, intensity, is_random=False, channel_index=2):
"""Shift the channels of an image, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] (default).
intensity : float
Intensity of shifting.
is_random : boolean
If True, randomly shift. Default is False.
channel_index : int
Index of channel. Default is 2.
Returns
-------
numpy.array
A processed image.
"""
if is_random:
factor = np.random.uniform(-intensity, intensity)
else:
factor = intensity
x = np.rollaxis(x, channel_index, 0)
min_x, max_x = np.min(x), np.max(x)
channel_images = [np.clip(x_channel + factor, min_x, max_x) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_index + 1)
return x
# x = np.rollaxis(x, channel_index, 0)
# min_x, max_x = np.min(x), np.max(x)
# channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x)
# for x_channel in x]
# x = np.stack(channel_images, axis=0)
# x = np.rollaxis(x, 0, channel_index+1)
# return x
def channel_shift_multi(x, intensity, is_random=False, channel_index=2):
"""Shift the channels of images with the same arguments, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__.
Usually be used for image segmentation which x=[X, Y], X and Y should be matched.
Parameters
-----------
x : list of numpy.array
List of images with dimension of [n_images, row, col, channel] (default).
others : args
See ``tl.prepro.channel_shift``.
Returns
-------
numpy.array
A list of processed images.
"""
if is_random:
factor = np.random.uniform(-intensity, intensity)
else:
factor = intensity
results = []
for data in x:
data = np.rollaxis(data, channel_index, 0)
min_x, max_x = np.min(data), np.max(data)
channel_images = [np.clip(x_channel + factor, min_x, max_x) for x_channel in x]
data = np.stack(channel_images, axis=0)
data = np.rollaxis(x, 0, channel_index + 1)
results.append(data)
return np.asarray(results)
# noise
def drop(x, keep=0.5):
"""Randomly set some pixels to zero by a given keeping probability.
Parameters
-----------
x : numpy.array
An image with dimension of [row, col, channel] or [row, col].
keep : float
The keeping probability (0, 1), the lower more values will be set to zero.
Returns
-------
numpy.array
A processed image.
"""
if len(x.shape) == 3:
if x.shape[-1] == 3: # color
img_size = x.shape
mask = np.random.binomial(n=1, p=keep, size=x.shape[:-1])
for i in range(3):
x[:, :, i] = np.multiply(x[:, :, i], mask)
elif x.shape[-1] == 1: # greyscale image
img_size = x.shape
x = np.multiply(x, np.random.binomial(n=1, p=keep, size=img_size))
else:
raise Exception("Unsupported shape {}".format(x.shape))
elif len(x.shape) == 2 or 1: # greyscale matrix (image) or vector
img_size = x.shape
x = np.multiply(x, np.random.binomial(n=1, p=keep, size=img_size))
else:
raise Exception("Unsupported shape {}".format(x.shape))
return x
# x = np.asarray([[1,2,3,4,5,6,7,8,9,10],[1,2,3,4,5,6,7,8,9,10]])
# x = np.asarray([x,x,x,x,x,x])
# x.shape = 10, 4, 3
# tl.logging.info(x)
# # exit()
# tl.logging.info(x.shape)
# # exit()
# tl.logging.info(drop(x, keep=1.))
# exit()
# Numpy and PIL
def array_to_img(x, dim_ordering=(0, 1, 2), scale=True):
"""Converts a numpy array to PIL image object (uint8 format).
Parameters
----------
x : numpy.array
An image with dimension of 3 and channels of 1 or 3.
dim_ordering : tuple of 3 int
Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0).
scale : boolean
If True, converts image to [0, 255] from any range of value like [-1, 2]. Default is True.
Returns
-------
PIL.image
An image.
References
-----------
`PIL Image.fromarray <http://pillow.readthedocs.io/en/3.1.x/reference/Image.html?highlight=fromarray>`__
"""
# if dim_ordering == 'default':
# dim_ordering = K.image_dim_ordering()
# if dim_ordering == 'th': # theano
# x = x.transpose(1, 2, 0)
x = x.transpose(dim_ordering)
if scale:
x += max(-np.min(x), 0)
x_max = np.max(x)
if x_max != 0:
# tl.logging.info(x_max)
# x /= x_max
x = x / x_max
x *= 255
if x.shape[2] == 3:
# RGB
return PIL.Image.fromarray(x.astype('uint8'), 'RGB')
elif x.shape[2] == 1:
# grayscale
return PIL.Image.fromarray(x[:, :, 0].astype('uint8'), 'L')
else:
raise Exception('Unsupported channel number: ', x.shape[2])
def find_contours(x, level=0.8, fully_connected='low', positive_orientation='low'):
"""Find iso-valued contours in a 2D array for a given level value, returns list of (n, 2)-ndarrays
see `skimage.measure.find_contours <http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours>`__.
Parameters
------------
x : 2D ndarray of double.
Input data in which to find contours.
level : float
Value along which to find contours in the array.
fully_connected : str
Either `low` or `high`. Indicates whether array elements below the given level value are to be considered fully-connected (and hence elements above the value will only be face connected), or vice-versa. (See notes below for details.)
positive_orientation : str
Either `low` or `high`. Indicates whether the output contours will produce positively-oriented polygons around islands of low- or high-valued elements. If `low` then contours will wind counter-clockwise around elements below the iso-value. Alternately, this means that low-valued elements are always on the left of the contour.
Returns
--------
list of (n,2)-ndarrays
Each contour is an ndarray of shape (n, 2), consisting of n (row, column) coordinates along the contour.
"""
return skimage.measure.find_contours(
x, level, fully_connected=fully_connected, positive_orientation=positive_orientation
)
def pt2map(list_points=None, size=(100, 100), val=1):
"""Inputs a list of points, return a 2D image.
Parameters
--------------
list_points : list of 2 int
[[x, y], [x, y]..] for point coordinates.
size : tuple of 2 int
(w, h) for output size.
val : float or int
For the contour value.
Returns
-------
numpy.array
An image.
"""
if list_points is None:
raise Exception("list_points : list of 2 int")
i_m = np.zeros(size)
if len(list_points) == 0:
return i_m
for xx in list_points:
for x in xx:
# tl.logging.info(x)
i_m[int(np.round(x[0]))][int(np.round(x[1]))] = val
return i_m
def binary_dilation(x, radius=3):
"""Return fast binary morphological dilation of an image.
see `skimage.morphology.binary_dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_dilation>`__.
Parameters
-----------
x : 2D array
A binary image.
radius : int
For the radius of mask.
Returns
-------
numpy.array
A processed binary image.
"""
mask = disk(radius)
x = _binary_dilation(x, selem=mask)
return x
def dilation(x, radius=3):
"""Return greyscale morphological dilation of an image,
see `skimage.morphology.dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.dilation>`__.
Parameters
-----------
x : 2D array
An greyscale image.
radius : int
For the radius of mask.
Returns
-------
numpy.array
A processed greyscale image.
"""
mask = disk(radius)
x = dilation(x, selem=mask)
return x
def binary_erosion(x, radius=3):
"""Return binary morphological erosion of an image,
see `skimage.morphology.binary_erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_erosion>`__.
Parameters
-----------
x : 2D array
A binary image.
radius : int
For the radius of mask.
Returns
-------
numpy.array
A processed binary image.
"""
mask = disk(radius)
x = _binary_erosion(x, selem=mask)
return x
def erosion(x, radius=3):
"""Return greyscale morphological erosion of an image,
see `skimage.morphology.erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.erosion>`__.
Parameters
-----------
x : 2D array
A greyscale image.
radius : int
For the radius of mask.
Returns
-------
numpy.array
A processed greyscale image.
"""
mask = disk(radius)
x = _erosion(x, selem=mask)
return x
def obj_box_coords_rescale(coords=None, shape=None):
"""Scale down a list of coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1].
Parameters
------------
coords : list of list of 4 ints or None
For coordinates of more than one images .e.g.[[x, y, w, h], [x, y, w, h], ...].
shape : list of 2 int or None
【height, width].
Returns
-------
list of list of 4 numbers
A list of new bounding boxes.
Examples
---------
>>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50], [10, 10, 20, 20]], shape=[100, 100])
>>> print(coords)
[[0.3, 0.4, 0.5, 0.5], [0.1, 0.1, 0.2, 0.2]]
>>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[50, 100])
>>> print(coords)
[[0.3, 0.8, 0.5, 1.0]]
>>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[100, 200])
>>> print(coords)
[[0.15, 0.4, 0.25, 0.5]]
Returns
-------
list of 4 numbers
New coordinates.
"""
if coords is None:
coords = []
if shape is None:
shape = [100, 200]
imh, imw = shape[0], shape[1]
imh = imh * 1.0 # * 1.0 for python2 : force division to be float point
imw = imw * 1.0
coords_new = list()
for coord in coords:
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
x = coord[0] / imw
y = coord[1] / imh
w = coord[2] / imw
h = coord[3] / imh
coords_new.append([x, y, w, h])
return coords_new
def obj_box_coord_rescale(coord=None, shape=None):
"""Scale down one coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1].
It is the reverse process of ``obj_box_coord_scale_to_pixelunit``.
Parameters
------------
coords : list of 4 int or None
One coordinates of one image e.g. [x, y, w, h].
shape : list of 2 int or None
For [height, width].
Returns
-------
list of 4 numbers
New bounding box.
Examples
---------
>>> coord = tl.prepro.obj_box_coord_rescale(coord=[30, 40, 50, 50], shape=[100, 100])
[0.3, 0.4, 0.5, 0.5]
"""
if coord is None:
coord = []
if shape is None:
shape = [100, 200]
return obj_box_coords_rescale(coords=[coord], shape=shape)[0]
def obj_box_coord_scale_to_pixelunit(coord, shape=None):
"""Convert one coordinate [x, y, w (or x2), h (or y2)] in ratio format to image coordinate format.
It is the reverse process of ``obj_box_coord_rescale``.
Parameters
-----------
coord : list of 4 float
One coordinate of one image [x, y, w (or x2), h (or y2)] in ratio format, i.e value range [0~1].
shape : tuple of 2 or None
For [height, width].
Returns
-------
list of 4 numbers
New bounding box.
Examples
---------
>>> x, y, x2, y2 = tl.prepro.obj_box_coord_scale_to_pixelunit([0.2, 0.3, 0.5, 0.7], shape=(100, 200, 3))
[40, 30, 100, 70]
"""
if shape is None:
shape = [100, 100]
imh, imw = shape[0:2]
x = int(coord[0] * imw)
x2 = int(coord[2] * imw)
y = int(coord[1] * imh)
y2 = int(coord[3] * imh)
return [x, y, x2, y2]
# coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50], [10, 10, 20, 20]], shape=[100, 100])
# tl.logging.info(coords)
# # [[0.3, 0.4, 0.5, 0.5], [0.1, 0.1, 0.2, 0.2]]
# coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[50, 100])
# tl.logging.info(coords)
# # [[0.3, 0.8, 0.5, 1.0]]
# coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[100, 200])
# tl.logging.info(coords)
# # [[0.15, 0.4, 0.25, 0.5]]
# exit()
def obj_box_coord_centroid_to_upleft_butright(coord, to_int=False):
"""Convert one coordinate [x_center, y_center, w, h] to [x1, y1, x2, y2] in up-left and botton-right format.
Parameters
------------
coord : list of 4 int/float
One coordinate.
to_int : boolean
Whether to convert output as integer.
Returns
-------
list of 4 numbers
New bounding box.
Examples
---------
>>> coord = obj_box_coord_centroid_to_upleft_butright([30, 40, 20, 20])
[20, 30, 40, 50]
"""
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
x_center, y_center, w, h = coord
x = x_center - w / 2.
y = y_center - h / 2.
x2 = x + w
y2 = y + h
if to_int:
return [int(x), int(y), int(x2), int(y2)]
else:
return [x, y, x2, y2]
# coord = obj_box_coord_centroid_to_upleft_butright([30, 40, 20, 20])
# tl.logging.info(coord) [20, 30, 40, 50]
# exit()
def obj_box_coord_upleft_butright_to_centroid(coord):
"""Convert one coordinate [x1, y1, x2, y2] to [x_center, y_center, w, h].
It is the reverse process of ``obj_box_coord_centroid_to_upleft_butright``.
Parameters
------------
coord : list of 4 int/float
One coordinate.
Returns
-------
list of 4 numbers
New bounding box.
"""
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x1, y1, x2, y2]")
x1, y1, x2, y2 = coord
w = x2 - x1
h = y2 - y1
x_c = x1 + w / 2.
y_c = y1 + h / 2.
return [x_c, y_c, w, h]
def obj_box_coord_centroid_to_upleft(coord):
"""Convert one coordinate [x_center, y_center, w, h] to [x, y, w, h].
It is the reverse process of ``obj_box_coord_upleft_to_centroid``.
Parameters
------------
coord : list of 4 int/float
One coordinate.
Returns
-------
list of 4 numbers
New bounding box.
"""
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
x_center, y_center, w, h = coord
x = x_center - w / 2.
y = y_center - h / 2.
return [x, y, w, h]
def obj_box_coord_upleft_to_centroid(coord):
"""Convert one coordinate [x, y, w, h] to [x_center, y_center, w, h].
It is the reverse process of ``obj_box_coord_centroid_to_upleft``.
Parameters
------------
coord : list of 4 int/float
One coordinate.
Returns
-------
list of 4 numbers
New bounding box.
"""
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
x, y, w, h = coord
x_center = x + w / 2.
y_center = y + h / 2.
return [x_center, y_center, w, h]
def parse_darknet_ann_str_to_list(annotations):
r"""Input string format of class, x, y, w, h, return list of list format.
Parameters
-----------
annotations : str
The annotations in darkent format "class, x, y, w, h ...." seperated by "\\n".
Returns
-------
list of list of 4 numbers
List of bounding box.
"""
annotations = annotations.split("\n")
ann = []
for a in annotations:
a = a.split()
if len(a) == 5:
for i, _v in enumerate(a):
if i == 0:
a[i] = int(a[i])
else:
a[i] = float(a[i])
ann.append(a)
return ann
def parse_darknet_ann_list_to_cls_box(annotations):
"""Parse darknet annotation format into two lists for class and bounding box.
Input list of [[class, x, y, w, h], ...], return two list of [class ...] and [[x, y, w, h], ...].
Parameters
------------
annotations : list of list
A list of class and bounding boxes of images e.g. [[class, x, y, w, h], ...]
Returns
-------
list of int
List of class labels.
list of list of 4 numbers
List of bounding box.
"""
class_list = []
bbox_list = []
for ann in annotations:
class_list.append(ann[0])
bbox_list.append(ann[1:])
return class_list, bbox_list
def obj_box_horizontal_flip(im, coords=None, is_rescale=False, is_center=False, is_random=False):
"""Left-right flip the image and coordinates for object detection.
Parameters
----------
im : numpy.array
An image with dimension of [row, col, channel] (default).
coords : list of list of 4 int/float or None
Coordinates [[x, y, w, h], [x, y, w, h], ...].
is_rescale : boolean
Set to True, if the input coordinates are rescaled to [0, 1]. Default is False.
is_center : boolean
Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False.
is_random : boolean
If True, randomly flip. Default is False.
Returns
-------
numpy.array
A processed image
list of list of 4 numbers
A list of new bounding boxes.
Examples
--------
>>> im = np.zeros([80, 100]) # as an image with shape width=100, height=80
>>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3], [0.1, 0.5, 0.2, 0.3]], is_rescale=True, is_center=True, is_random=False)
>>> print(coords)
[[0.8, 0.4, 0.3, 0.3], [0.9, 0.5, 0.2, 0.3]]
>>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3]], is_rescale=True, is_center=False, is_random=False)
>>> print(coords)
[[0.5, 0.4, 0.3, 0.3]]
>>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=True, is_random=False)
>>> print(coords)
[[80, 40, 30, 30]]
>>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=False, is_random=False)
>>> print(coords)
[[50, 40, 30, 30]]
"""
if coords is None:
coords = []
def _flip(im, coords):
im = flip_axis(im, axis=1, is_random=False)
coords_new = list()
for coord in coords:
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
if is_rescale:
if is_center:
# x_center' = 1 - x
x = 1. - coord[0]
else:
# x_center' = 1 - x - w
x = 1. - coord[0] - coord[2]
else:
if is_center:
# x' = im.width - x
x = im.shape[1] - coord[0]
else:
# x' = im.width - x - w
x = im.shape[1] - coord[0] - coord[2]
coords_new.append([x, coord[1], coord[2], coord[3]])
return im, coords_new
if is_random:
factor = np.random.uniform(-1, 1)
if factor > 0:
return _flip(im, coords)
else:
return im, coords
else:
return _flip(im, coords)
obj_box_left_right_flip = obj_box_horizontal_flip
# im = np.zeros([80, 100]) # as an image with shape width=100, height=80
# im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3], [0.1, 0.5, 0.2, 0.3]], is_rescale=True, is_center=True, is_random=False)
# tl.logging.info(coords)
# # [[0.8, 0.4, 0.3, 0.3], [0.9, 0.5, 0.2, 0.3]]
# im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3]], is_rescale=True, is_center=False, is_random=False)
# tl.logging.info(coords)
# # [[0.5, 0.4, 0.3, 0.3]]
# im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=True, is_random=False)
# tl.logging.info(coords)
# # [[80, 40, 30, 30]]
# im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=False, is_random=False)
# tl.logging.info(coords)
# # [[50, 40, 30, 30]]
# exit()
def obj_box_imresize(im, coords=None, size=None, interp='bicubic', mode=None, is_rescale=False):
"""Resize an image, and compute the new bounding box coordinates.
Parameters
-------------
im : numpy.array
An image with dimension of [row, col, channel] (default).
coords : list of list of 4 int/float or None
Coordinates [[x, y, w, h], [x, y, w, h], ...]
size interp and mode : args
See ``tl.prepro.imresize``.
is_rescale : boolean
Set to True, if the input coordinates are rescaled to [0, 1], then return the original coordinates. Default is False.
Returns
-------
numpy.array
A processed image
list of list of 4 numbers
A list of new bounding boxes.
Examples
--------
>>> im = np.zeros([80, 100, 3]) # as an image with shape width=100, height=80
>>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30], [10, 20, 20, 20]], size=[160, 200], is_rescale=False)
>>> print(coords)
[[40, 80, 60, 60], [20, 40, 40, 40]]
>>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[40, 100], is_rescale=False)
>>> print(coords)
[[20, 20, 30, 15]]
>>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[60, 150], is_rescale=False)
>>> print(coords)
[[30, 30, 45, 22]]
>>> im2, coords = obj_box_imresize(im, coords=[[0.2, 0.4, 0.3, 0.3]], size=[160, 200], is_rescale=True)
>>> print(coords, im2.shape)
[[0.2, 0.4, 0.3, 0.3]] (160, 200, 3)
"""
if coords is None:
coords = []
if size is None:
size = [100, 100]
imh, imw = im.shape[0:2]
imh = imh * 1.0 # * 1.0 for python2 : force division to be float point
imw = imw * 1.0
im = imresize(im, size=size, interp=interp, mode=mode)
if is_rescale is False:
coords_new = list()
for coord in coords:
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
# x' = x * (imw'/imw)
x = int(coord[0] * (size[1] / imw))
# y' = y * (imh'/imh)
# tl.logging.info('>>', coord[1], size[0], imh)
y = int(coord[1] * (size[0] / imh))
# w' = w * (imw'/imw)
w = int(coord[2] * (size[1] / imw))
# h' = h * (imh'/imh)
h = int(coord[3] * (size[0] / imh))
coords_new.append([x, y, w, h])
return im, coords_new
else:
return im, coords
# im = np.zeros([80, 100, 3]) # as an image with shape width=100, height=80
# _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30], [10, 20, 20, 20]], size=[160, 200], is_rescale=False)
# tl.logging.info(coords)
# # [[40, 80, 60, 60], [20, 40, 40, 40]]
# _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[40, 100], is_rescale=False)
# tl.logging.info(coords)
# # [20, 20, 30, 15]
# _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[60, 150], is_rescale=False)
# tl.logging.info(coords)
# # [30, 30, 45, 22]
# im2, coords = obj_box_imresize(im, coords=[[0.2, 0.4, 0.3, 0.3]], size=[160, 200], is_rescale=True)
# tl.logging.info(coords, im2.shape)
# # [0.2, 0.4, 0.3, 0.3] (160, 200, 3)
# exit()
def obj_box_crop(
im, classes=None, coords=None, wrg=100, hrg=100, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02,
thresh_wh2=12.
):
"""Randomly or centrally crop an image, and compute the new bounding box coordinates.
Objects outside the cropped image will be removed.
Parameters
-----------
im : numpy.array
An image with dimension of [row, col, channel] (default).
classes : list of int or None
Class IDs.
coords : list of list of 4 int/float or None
Coordinates [[x, y, w, h], [x, y, w, h], ...]
wrg hrg and is_random : args
See ``tl.prepro.crop``.
is_rescale : boolean
Set to True, if the input coordinates are rescaled to [0, 1]. Default is False.
is_center : boolean, default False
Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False.
thresh_wh : float
Threshold, remove the box if its ratio of width(height) to image size less than the threshold.
thresh_wh2 : float
Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold.
Returns
-------
numpy.array
A processed image
list of int
A list of classes
list of list of 4 numbers
A list of new bounding boxes.
"""
if classes is None:
classes = []
if coords is None:
coords = []
h, w = im.shape[0], im.shape[1]
if (h <= hrg) or (w <= wrg):
raise AssertionError("The size of cropping should smaller than the original image")
if is_random:
h_offset = int(np.random.uniform(0, h - hrg) - 1)
w_offset = int(np.random.uniform(0, w - wrg) - 1)
h_end = hrg + h_offset
w_end = wrg + w_offset
im_new = im[h_offset:h_end, w_offset:w_end]
else: # central crop
h_offset = int(np.floor((h - hrg) / 2.))
w_offset = int(np.floor((w - wrg) / 2.))
h_end = h_offset + hrg
w_end = w_offset + wrg
im_new = im[h_offset:h_end, w_offset:w_end]
# w
# _____________________________
# | h/w offset |
# | ------- |
# h | | | |
# | | | |
# | ------- |
# | h/w end |
# |___________________________|
def _get_coord(coord):
"""Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates,
before getting the new coordinates.
Boxes outsides the cropped image will be removed.
"""
if is_center:
coord = obj_box_coord_centroid_to_upleft(coord)
##======= pixel unit format and upleft, w, h ==========##
# x = np.clip( coord[0] - w_offset, 0, w_end - w_offset)
# y = np.clip( coord[1] - h_offset, 0, h_end - h_offset)
# w = np.clip( coord[2] , 0, w_end - w_offset)
# h = np.clip( coord[3] , 0, h_end - h_offset)
x = coord[0] - w_offset
y = coord[1] - h_offset
w = coord[2]
h = coord[3]
if x < 0:
if x + w <= 0:
return None
w = w + x
x = 0
elif x > im_new.shape[1]: # object outside the cropped image
return None
if y < 0:
if y + h <= 0:
return None
h = h + y
y = 0
elif y > im_new.shape[0]: # object outside the cropped image
return None
if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image
w = im_new.shape[1] - x
if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image
h = im_new.shape[0] - y
if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow
# tl.logging.info('xx', w, h)
return None
if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) <
thresh_wh): # object shape strange: too narrow
# tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0])
return None
coord = [x, y, w, h]
## convert back if input format is center.
if is_center:
coord = obj_box_coord_upleft_to_centroid(coord)
return coord
coords_new = list()
classes_new = list()
for i, _ in enumerate(coords):
coord = coords[i]
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
if is_rescale:
# for scaled coord, upscaled before process and scale back in the end.
coord = obj_box_coord_scale_to_pixelunit(coord, im.shape)
coord = _get_coord(coord)
if coord is not None:
coord = obj_box_coord_rescale(coord, im_new.shape)
coords_new.append(coord)
classes_new.append(classes[i])
else:
coord = _get_coord(coord)
if coord is not None:
coords_new.append(coord)
classes_new.append(classes[i])
return im_new, classes_new, coords_new
def obj_box_shift(
im, classes=None, coords=None, wrg=0.1, hrg=0.1, row_index=0, col_index=1, channel_index=2, fill_mode='nearest',
cval=0., order=1, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12.
):
"""Shift an image randomly or non-randomly, and compute the new bounding box coordinates.
Objects outside the cropped image will be removed.
Parameters
-----------
im : numpy.array
An image with dimension of [row, col, channel] (default).
classes : list of int or None
Class IDs.
coords : list of list of 4 int/float or None
Coordinates [[x, y, w, h], [x, y, w, h], ...]
wrg, hrg row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.shift``.
is_rescale : boolean
Set to True, if the input coordinates are rescaled to [0, 1]. Default is False.
is_center : boolean
Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False.
thresh_wh : float
Threshold, remove the box if its ratio of width(height) to image size less than the threshold.
thresh_wh2 : float
Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold.
Returns
-------
numpy.array
A processed image
list of int
A list of classes
list of list of 4 numbers
A list of new bounding boxes.
"""
if classes is None:
classes = []
if coords is None:
coords = []
imh, imw = im.shape[row_index], im.shape[col_index]
if (hrg >= 1.0) and (hrg <= 0.) and (wrg >= 1.0) and (wrg <= 0.):
raise AssertionError("shift range should be (0, 1)")
if is_random:
tx = np.random.uniform(-hrg, hrg) * imh
ty = np.random.uniform(-wrg, wrg) * imw
else:
tx, ty = hrg * imh, wrg * imw
translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
transform_matrix = translation_matrix # no need to do offset
im_new = affine_transform(im, transform_matrix, channel_index, fill_mode, cval, order)
# modified from obj_box_crop
def _get_coord(coord):
"""Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates,
before getting the new coordinates.
Boxes outsides the cropped image will be removed.
"""
if is_center:
coord = obj_box_coord_centroid_to_upleft(coord)
##======= pixel unit format and upleft, w, h ==========##
x = coord[0] - ty # only change this
y = coord[1] - tx # only change this
w = coord[2]
h = coord[3]
if x < 0:
if x + w <= 0:
return None
w = w + x
x = 0
elif x > im_new.shape[1]: # object outside the cropped image
return None
if y < 0:
if y + h <= 0:
return None
h = h + y
y = 0
elif y > im_new.shape[0]: # object outside the cropped image
return None
if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image
w = im_new.shape[1] - x
if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image
h = im_new.shape[0] - y
if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow
# tl.logging.info('xx', w, h)
return None
if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) <
thresh_wh): # object shape strange: too narrow
# tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0])
return None
coord = [x, y, w, h]
## convert back if input format is center.
if is_center:
coord = obj_box_coord_upleft_to_centroid(coord)
return coord
coords_new = list()
classes_new = list()
for i, _ in enumerate(coords):
coord = coords[i]
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
if is_rescale:
# for scaled coord, upscaled before process and scale back in the end.
coord = obj_box_coord_scale_to_pixelunit(coord, im.shape)
coord = _get_coord(coord)
if coord is not None:
coord = obj_box_coord_rescale(coord, im_new.shape)
coords_new.append(coord)
classes_new.append(classes[i])
else:
coord = _get_coord(coord)
if coord is not None:
coords_new.append(coord)
classes_new.append(classes[i])
return im_new, classes_new, coords_new
def obj_box_zoom(
im, classes=None, coords=None, zoom_range=(0.9, 1.1), row_index=0, col_index=1, channel_index=2,
fill_mode='nearest', cval=0., order=1, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02,
thresh_wh2=12.
):
"""Zoom in and out of a single image, randomly or non-randomly, and compute the new bounding box coordinates.
Objects outside the cropped image will be removed.
Parameters
-----------
im : numpy.array
An image with dimension of [row, col, channel] (default).
classes : list of int or None
Class IDs.
coords : list of list of 4 int/float or None
Coordinates [[x, y, w, h], [x, y, w, h], ...].
zoom_range row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.zoom``.
is_rescale : boolean
Set to True, if the input coordinates are rescaled to [0, 1]. Default is False.
is_center : boolean
Set to True, if the x and y of coordinates are the centroid. (i.e. darknet format). Default is False.
thresh_wh : float
Threshold, remove the box if its ratio of width(height) to image size less than the threshold.
thresh_wh2 : float
Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold.
Returns
-------
numpy.array
A processed image
list of int
A list of classes
list of list of 4 numbers
A list of new bounding boxes.
"""
if classes is None:
classes = []
if coords is None:
coords = []
if len(zoom_range) != 2:
raise Exception('zoom_range should be a tuple or list of two floats. ' 'Received arg: ', zoom_range)
if is_random:
if zoom_range[0] == 1 and zoom_range[1] == 1:
zx, zy = 1, 1
tl.logging.info(" random_zoom : not zoom in/out")
else:
zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2)
else:
zx, zy = zoom_range
# tl.logging.info(zx, zy)
zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]])
h, w = im.shape[row_index], im.shape[col_index]
transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w)
im_new = affine_transform(im, transform_matrix, channel_index, fill_mode, cval, order)
# modified from obj_box_crop
def _get_coord(coord):
"""Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates,
before getting the new coordinates.
Boxes outsides the cropped image will be removed.
"""
if is_center:
coord = obj_box_coord_centroid_to_upleft(coord)
# ======= pixel unit format and upleft, w, h ==========
x = (coord[0] - im.shape[1] / 2) / zy + im.shape[1] / 2 # only change this
y = (coord[1] - im.shape[0] / 2) / zx + im.shape[0] / 2 # only change this
w = coord[2] / zy # only change this
h = coord[3] / zx # only change thisS
if x < 0:
if x + w <= 0:
return None
w = w + x
x = 0
elif x > im_new.shape[1]: # object outside the cropped image
return None
if y < 0:
if y + h <= 0:
return None
h = h + y
y = 0
elif y > im_new.shape[0]: # object outside the cropped image
return None
if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image
w = im_new.shape[1] - x
if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image
h = im_new.shape[0] - y
if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow
# tl.logging.info('xx', w, h)
return None
if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) <
thresh_wh): # object shape strange: too narrow
# tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0])
return None
coord = [x, y, w, h]
# convert back if input format is center.
if is_center:
coord = obj_box_coord_upleft_to_centroid(coord)
return coord
coords_new = list()
classes_new = list()
for i, _ in enumerate(coords):
coord = coords[i]
if len(coord) != 4:
raise AssertionError("coordinate should be 4 values : [x, y, w, h]")
if is_rescale:
# for scaled coord, upscaled before process and scale back in the end.
coord = obj_box_coord_scale_to_pixelunit(coord, im.shape)
coord = _get_coord(coord)
if coord is not None:
coord = obj_box_coord_rescale(coord, im_new.shape)
coords_new.append(coord)
classes_new.append(classes[i])
else:
coord = _get_coord(coord)
if coord is not None:
coords_new.append(coord)
classes_new.append(classes[i])
return im_new, classes_new, coords_new
def pad_sequences(sequences, maxlen=None, dtype='int32', padding='post', truncating='pre', value=0.):
"""Pads each sequence to the same length:
the length of the longest sequence.
If maxlen is provided, any sequence longer
than maxlen is truncated to maxlen.
Truncation happens off either the beginning (default) or
the end of the sequence.
Supports post-padding and pre-padding (default).
Parameters
----------
sequences : list of list of int
All sequences where each row is a sequence.
maxlen : int
Maximum length.
dtype : numpy.dtype or str
Data type to cast the resulting sequence.
padding : str
Either 'pre' or 'post', pad either before or after each sequence.
truncating : str
Either 'pre' or 'post', remove values from sequences larger than maxlen either in the beginning or in the end of the sequence
value : float
Value to pad the sequences to the desired value.
Returns
----------
x : numpy.array
With dimensions (number_of_sequences, maxlen)
Examples
----------
>>> sequences = [[1,1,1,1,1],[2,2,2],[3,3]]
>>> sequences = pad_sequences(sequences, maxlen=None, dtype='int32',
... padding='post', truncating='pre', value=0.)
[[1 1 1 1 1]
[2 2 2 0 0]
[3 3 0 0 0]]
"""
lengths = [len(s) for s in sequences]
nb_samples = len(sequences)
if maxlen is None:
maxlen = np.max(lengths)
# take the sample shape from the first non empty sequence
# checking for consistency in the main loop below.
sample_shape = tuple()
for s in sequences:
if len(s) > 0:
sample_shape = np.asarray(s).shape[1:]
break
x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype)
for idx, s in enumerate(sequences):
if len(s) == 0:
continue # empty list was found
if truncating == 'pre':
trunc = s[-maxlen:]
elif truncating == 'post':
trunc = s[:maxlen]
else:
raise ValueError('Truncating type "%s" not understood' % truncating)
# check `trunc` has expected shape
trunc = np.asarray(trunc, dtype=dtype)
if trunc.shape[1:] != sample_shape:
raise ValueError(
'Shape of sample %s of sequence at position %s is different from expected shape %s' %
(trunc.shape[1:], idx, sample_shape)
)
if padding == 'post':
x[idx, :len(trunc)] = trunc
elif padding == 'pre':
x[idx, -len(trunc):] = trunc
else:
raise ValueError('Padding type "%s" not understood' % padding)
return x.tolist()
def remove_pad_sequences(sequences, pad_id=0):
"""Remove padding.
Parameters
-----------
sequences : list of list of int
All sequences where each row is a sequence.
pad_id : int
The pad ID.
Returns
----------
list of list of int
The processed sequences.
Examples
----------
>>> sequences = [[2,3,4,0,0], [5,1,2,3,4,0,0,0], [4,5,0,2,4,0,0,0]]
>>> print(remove_pad_sequences(sequences, pad_id=0))
[[2, 3, 4], [5, 1, 2, 3, 4], [4, 5, 0, 2, 4]]
"""
sequences_out = copy.deepcopy(sequences)
for i, _ in enumerate(sequences):
# for j in range(len(sequences[i])):
# if sequences[i][j] == pad_id:
# sequences_out[i] = sequences_out[i][:j]
# break
for j in range(1, len(sequences[i])):
if sequences[i][-j] != pad_id:
sequences_out[i] = sequences_out[i][0:-j + 1]
break
return sequences_out
def process_sequences(sequences, end_id=0, pad_val=0, is_shorten=True, remain_end_id=False):
"""Set all tokens(ids) after END token to the padding value, and then shorten (option) it to the maximum sequence length in this batch.
Parameters
-----------
sequences : list of list of int
All sequences where each row is a sequence.
end_id : int
The special token for END.
pad_val : int
Replace the `end_id` and the IDs after `end_id` to this value.
is_shorten : boolean
Shorten the sequences. Default is True.
remain_end_id : boolean
Keep an `end_id` in the end. Default is False.
Returns
----------
list of list of int
The processed sequences.
Examples
---------
>>> sentences_ids = [[4, 3, 5, 3, 2, 2, 2, 2], <-- end_id is 2
... [5, 3, 9, 4, 9, 2, 2, 3]] <-- end_id is 2
>>> sentences_ids = precess_sequences(sentences_ids, end_id=vocab.end_id, pad_val=0, is_shorten=True)
[[4, 3, 5, 3, 0], [5, 3, 9, 4, 9]]
"""
max_length = 0
for _, seq in enumerate(sequences):
is_end = False
for i_w, n in enumerate(seq):
if n == end_id and is_end == False: # 1st time to see end_id
is_end = True
if max_length < i_w:
max_length = i_w
if remain_end_id is False:
seq[i_w] = pad_val # set end_id to pad_val
elif is_end ==True:
seq[i_w] = pad_val
if remain_end_id is True:
max_length += 1
if is_shorten:
for i, seq in enumerate(sequences):
sequences[i] = seq[:max_length]
return sequences
def sequences_add_start_id(sequences, start_id=0, remove_last=False):
"""Add special start token(id) in the beginning of each sequence.
Parameters
------------
sequences : list of list of int
All sequences where each row is a sequence.
start_id : int
The start ID.
remove_last : boolean
Remove the last value of each sequences. Usually be used for removing the end ID.
Returns
----------
list of list of int
The processed sequences.
Examples
---------
>>> sentences_ids = [[4,3,5,3,2,2,2,2], [5,3,9,4,9,2,2,3]]
>>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2)
[[2, 4, 3, 5, 3, 2, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2, 3]]
>>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2, remove_last=True)
[[2, 4, 3, 5, 3, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2]]
For Seq2seq
>>> input = [a, b, c]
>>> target = [x, y, z]
>>> decode_seq = [start_id, a, b] <-- sequences_add_start_id(input, start_id, True)
"""
sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences)
for i, _ in enumerate(sequences):
if remove_last:
sequences_out[i] = [start_id] + sequences[i][:-1]
else:
sequences_out[i] = [start_id] + sequences[i]
return sequences_out
def sequences_add_end_id(sequences, end_id=888):
"""Add special end token(id) in the end of each sequence.
Parameters
-----------
sequences : list of list of int
All sequences where each row is a sequence.
end_id : int
The end ID.
Returns
----------
list of list of int
The processed sequences.
Examples
---------
>>> sequences = [[1,2,3],[4,5,6,7]]
>>> print(sequences_add_end_id(sequences, end_id=999))
[[1, 2, 3, 999], [4, 5, 6, 999]]
"""
sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences)
for i, _ in enumerate(sequences):
sequences_out[i] = sequences[i] + [end_id]
return sequences_out
def sequences_add_end_id_after_pad(sequences, end_id=888, pad_id=0):
"""Add special end token(id) in the end of each sequence.
Parameters
-----------
sequences : list of list of int
All sequences where each row is a sequence.
end_id : int
The end ID.
pad_id : int
The pad ID.
Returns
----------
list of list of int
The processed sequences.
Examples
---------
>>> sequences = [[1,2,0,0], [1,2,3,0], [1,2,3,4]]
>>> print(sequences_add_end_id_after_pad(sequences, end_id=99, pad_id=0))
[[1, 2, 99, 0], [1, 2, 3, 99], [1, 2, 3, 4]]
"""
# sequences_out = [[] for _ in range(len(sequences))]#[[]] * len(sequences)
sequences_out = copy.deepcopy(sequences)
# # add a pad to all
# for i in range(len(sequences)):
# for j in range(len(sequences[i])):
# sequences_out[i].append(pad_id)
# # pad -- > end
# max_len = 0
for i, v in enumerate(sequences):
for j, _v2 in enumerate(v):
if sequences[i][j] == pad_id:
sequences_out[i][j] = end_id
# if j > max_len:
# max_len = j
break
# # remove pad if too long
# for i in range(len(sequences)):
# for j in range(len(sequences[i])):
# sequences_out[i] = sequences_out[i][:max_len+1]
return sequences_out
def sequences_get_mask(sequences, pad_val=0):
"""Return mask for sequences.
Parameters
-----------
sequences : list of list of int
All sequences where each row is a sequence.
pad_val : int
The pad value.
Returns
----------
list of list of int
The mask.
Examples
---------
>>> sentences_ids = [[4, 0, 5, 3, 0, 0],
... [5, 3, 9, 4, 9, 0]]
>>> mask = sequences_get_mask(sentences_ids, pad_val=0)
[[1 1 1 1 0 0]
[1 1 1 1 1 0]]
"""
mask = np.ones_like(sequences)
for i, seq in enumerate(sequences):
for i_w in reversed(range(len(seq))):
if seq[i_w] == pad_val:
mask[i, i_w] = 0
else:
break # <-- exit the for loop, prepcess next sequence
return mask
def keypoint_random_crop(image, annos, mask=None, size=(368, 368)):
"""Randomly crop an image and corresponding keypoints without influence scales, given by ``keypoint_random_resize_shortestedge``.
Parameters
-----------
image : 3 channel image
The given image for augmentation.
annos : list of list of floats
The keypoints annotation of people.
mask : single channel image or None
The mask if available.
size : tuple of int
The size of returned image.
Returns
----------
preprocessed image, annotation, mask
"""
_target_height = size[0]
_target_width = size[1]
target_size = (_target_width, _target_height)
if len(np.shape(image)) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
height, width, _ = np.shape(image)
for _ in range(50):
x = random.randrange(0, width - target_size[0]) if width > target_size[0] else 0
y = random.randrange(0, height - target_size[1]) if height > target_size[1] else 0
# check whether any face is inside the box to generate a reasonably-balanced datasets
for joint in annos:
if x <= joint[0][0] < x + target_size[0] and y <= joint[0][1] < y + target_size[1]:
break
def pose_crop(image, annos, mask, x, y, w, h): # TODO : speed up with affine transform
# adjust image
target_size = (w, h)
img = image
resized = img[y:y + target_size[1], x:x + target_size[0], :]
resized_mask = mask[y:y + target_size[1], x:x + target_size[0]]
# adjust meta data
adjust_joint_list = []
for joint in annos:
adjust_joint = []
for point in joint:
if point[0] < -10 or point[1] < -10:
adjust_joint.append((-1000, -1000))
continue
new_x, new_y = point[0] - x, point[1] - y
# should not crop outside the image
if new_x > w - 1 or new_y > h - 1:
adjust_joint.append((-1000, -1000))
continue
adjust_joint.append((new_x, new_y))
adjust_joint_list.append(adjust_joint)
return resized, adjust_joint_list, resized_mask
return pose_crop(image, annos, mask, x, y, target_size[0], target_size[1])
def keypoint_resize_random_crop(image, annos, mask=None, size=(368, 368)):
"""Reszie the image to make either its width or height equals to the given sizes.
Then randomly crop image without influence scales.
Resize the image match with the minimum size before cropping, this API will change the zoom scale of object.
Parameters
-----------
image : 3 channel image
The given image for augmentation.
annos : list of list of floats
The keypoints annotation of people.
mask : single channel image or None
The mask if available.
size : tuple of int
The size (height, width) of returned image.
Returns
----------
preprocessed image, annos, mask
"""
if len(np.shape(image)) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
def resize_image(image, annos, mask, target_width, target_height):
"""Reszie image
Parameters
-----------
image : 3 channel image
The given image.
annos : list of list of floats
Keypoints of people
mask : single channel image or None
The mask if available.
target_width : int
Expected width of returned image.
target_height : int
Expected height of returned image.
Returns
----------
preprocessed input image, annos, mask
"""
y, x, _ = np.shape(image)
ratio_y = target_height / y
ratio_x = target_width / x
new_joints = []
# update meta
for people in annos:
new_keypoints = []
for keypoints in people:
if keypoints[0] < 0 or keypoints[1] < 0:
new_keypoints.append((-1000, -1000))
continue
pts = (int(keypoints[0] * ratio_x + 0.5), int(keypoints[1] * ratio_y + 0.5))
if pts[0] > target_width - 1 or pts[1] > target_height - 1:
new_keypoints.append((-1000, -1000))
continue
new_keypoints.append(pts)
new_joints.append(new_keypoints)
annos = new_joints
new_image = cv2.resize(image, (target_width, target_height), interpolation=cv2.INTER_AREA)
if mask is not None:
new_mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_AREA)
return new_image, annos, new_mask
else:
return new_image, annos, None
_target_height = size[0]
_target_width = size[1]
if len(np.shape(image)) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
input_height, input_width, _ = np.shape(image)
vertical_ratio = _target_height / input_height
horizontal_ratio = _target_width / input_width
rescale_ratio = max(vertical_ratio, horizontal_ratio)
image, annos, mask = resize_image(
image, annos, mask, round(input_width * rescale_ratio), round(input_height * rescale_ratio)
)
# At this point we should have input image which matches at least target
# height or target width, while the other dimensions larger than target.
new_height, new_width, _ = np.shape(image)
if new_height > _target_height:
crop_range_y = np.random.randint(0, new_height - _target_height)
image = image[crop_range_y:crop_range_y + _target_height, :, :]
if mask is not None:
mask = mask[crop_range_y:crop_range_y + _target_height, :]
new_joints = []
for people in annos: # TODO : speed up with affine transform
new_keypoints = []
for keypoints in people:
# case orginal points are not usable
if keypoints[1] >= crop_range_y and keypoints[1] <= crop_range_y + _target_height - 1:
pts = (int(keypoints[0]), int(keypoints[1] - crop_range_y))
else:
pts = (-1000, -1000)
new_keypoints.append(pts)
new_joints.append(new_keypoints)
annos = new_joints
elif new_width > _target_width:
crop_range_x = np.random.randint(0, new_width - _target_width)
image = image[:, crop_range_x:crop_range_x + _target_width, :]
if mask is not None:
mask = mask[:, crop_range_x:crop_range_x + _target_width]
new_joints = []
for people in annos:
new_keypoints = []
for keypoints in people:
# case orginal points are not usable
if keypoints[0] >= crop_range_x and keypoints[0] <= crop_range_x + _target_width - 1:
pts = (int(keypoints[0] - crop_range_x), int(keypoints[1]))
else:
pts = (-1000, -1000)
new_keypoints.append(pts)
new_joints.append(new_keypoints)
annos = new_joints
if mask is not None:
return image, annos, mask
else:
return image, annos, None
def keypoint_random_rotate(image, annos, mask=None, rg=15.):
"""Rotate an image and corresponding keypoints.
Parameters
-----------
image : 3 channel image
The given image for augmentation.
annos : list of list of floats
The keypoints annotation of people.
mask : single channel image or None
The mask if available.
rg : int or float
Degree to rotate, usually 0 ~ 180.
Returns
----------
preprocessed image, annos, mask
"""
def _rotate_coord(shape, newxy, point, angle):
angle = -1 * angle / 180.0 * math.pi
ox, oy = shape
px, py = point
ox /= 2
oy /= 2
qx = math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy)
qy = math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy)
new_x, new_y = newxy
qx += ox - new_x
qy += oy - new_y
return int(qx + 0.5), int(qy + 0.5)
def _largest_rotated_rect(w, h, angle):
"""
Get largest rectangle after rotation.
http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
angle = angle / 180.0 * math.pi
if w <= 0 or h <= 0:
return 0, 0
width_is_longer = w >= h
side_long, side_short = (w, h) if width_is_longer else (h, w)
# since the solutions for angle, -angle and 180-angle are all the same,
# if suffices to look at the first quadrant and the absolute values of sin,cos:
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
if side_short <= 2. * sin_a * cos_a * side_long:
# half constrained case: two crop corners touch the longer side,
# the other two corners are on the mid-line parallel to the longer line
x = 0.5 * side_short
wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a)
else:
# fully constrained case: crop touches all 4 sides
cos_2a = cos_a * cos_a - sin_a * sin_a
wr, hr = (w * cos_a - h * sin_a) / cos_2a, (h * cos_a - w * sin_a) / cos_2a
return int(np.round(wr)), int(np.round(hr))
img_shape = np.shape(image)
height = img_shape[0]
width = img_shape[1]
deg = np.random.uniform(-rg, rg)
img = image
center = (img.shape[1] * 0.5, img.shape[0] * 0.5) # x, y
rot_m = cv2.getRotationMatrix2D((int(center[0]), int(center[1])), deg, 1)
ret = cv2.warpAffine(img, rot_m, img.shape[1::-1], flags=cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT)
if img.ndim == 3 and ret.ndim == 2:
ret = ret[:, :, np.newaxis]
neww, newh = _largest_rotated_rect(ret.shape[1], ret.shape[0], deg)
neww = min(neww, ret.shape[1])
newh = min(newh, ret.shape[0])
newx = int(center[0] - neww * 0.5)
newy = int(center[1] - newh * 0.5)
# print(ret.shape, deg, newx, newy, neww, newh)
img = ret[newy:newy + newh, newx:newx + neww]
# adjust meta data
adjust_joint_list = []
for joint in annos: # TODO : speed up with affine transform
adjust_joint = []
for point in joint:
if point[0] < -100 or point[1] < -100:
adjust_joint.append((-1000, -1000))
continue
x, y = _rotate_coord((width, height), (newx, newy), point, deg)
if x > neww - 1 or y > newh - 1:
adjust_joint.append((-1000, -1000))
continue
if x < 0 or y < 0:
adjust_joint.append((-1000, -1000))
continue
adjust_joint.append((x, y))
adjust_joint_list.append(adjust_joint)
joint_list = adjust_joint_list
if mask is not None:
msk = mask
center = (msk.shape[1] * 0.5, msk.shape[0] * 0.5) # x, y
rot_m = cv2.getRotationMatrix2D((int(center[0]), int(center[1])), deg, 1)
ret = cv2.warpAffine(msk, rot_m, msk.shape[1::-1], flags=cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT)
if msk.ndim == 3 and msk.ndim == 2:
ret = ret[:, :, np.newaxis]
neww, newh = _largest_rotated_rect(ret.shape[1], ret.shape[0], deg)
neww = min(neww, ret.shape[1])
newh = min(newh, ret.shape[0])
newx = int(center[0] - neww * 0.5)
newy = int(center[1] - newh * 0.5)
# print(ret.shape, deg, newx, newy, neww, newh)
msk = ret[newy:newy + newh, newx:newx + neww]
return img, joint_list, msk
else:
return img, joint_list, None
def keypoint_random_flip(
image, annos, mask=None, prob=0.5, flip_list=(0, 1, 5, 6, 7, 2, 3, 4, 11, 12, 13, 8, 9, 10, 15, 14, 17, 16, 18)
):
"""Flip an image and corresponding keypoints.
Parameters
-----------
image : 3 channel image
The given image for augmentation.
annos : list of list of floats
The keypoints annotation of people.
mask : single channel image or None
The mask if available.
prob : float, 0 to 1
The probability to flip the image, if 1, always flip the image.
flip_list : tuple of int
Denotes how the keypoints number be changed after flipping which is required for pose estimation task.
The left and right body should be maintained rather than switch.
(Default COCO format).
Set to an empty tuple if you don't need to maintain left and right information.
Returns
----------
preprocessed image, annos, mask
"""
_prob = np.random.uniform(0, 1.0)
if _prob < prob:
return image, annos, mask
_, width, _ = np.shape(image)
image = cv2.flip(image, 1)
mask = cv2.flip(mask, 1)
new_joints = []
for people in annos: # TODO : speed up with affine transform
new_keypoints = []
for k in flip_list:
point = people[k]
if point[0] < 0 or point[1] < 0:
new_keypoints.append((-1000, -1000))
continue
if point[0] > image.shape[1] - 1 or point[1] > image.shape[0] - 1:
new_keypoints.append((-1000, -1000))
continue
if (width - point[0]) > image.shape[1] - 1:
new_keypoints.append((-1000, -1000))
continue
new_keypoints.append((width - point[0], point[1]))
new_joints.append(new_keypoints)
annos = new_joints
return image, annos, mask
def keypoint_random_resize(image, annos, mask=None, zoom_range=(0.8, 1.2)):
"""Randomly resize an image and corresponding keypoints.
The height and width of image will be changed independently, so the scale will be changed.
Parameters
-----------
image : 3 channel image
The given image for augmentation.
annos : list of list of floats
The keypoints annotation of people.
mask : single channel image or None
The mask if available.
zoom_range : tuple of two floats
The minimum and maximum factor to zoom in or out, e.g (0.5, 1) means zoom out 1~2 times.
Returns
----------
preprocessed image, annos, mask
"""
height = image.shape[0]
width = image.shape[1]
_min, _max = zoom_range
scalew = np.random.uniform(_min, _max)
scaleh = np.random.uniform(_min, _max)
neww = int(width * scalew)
newh = int(height * scaleh)
dst = cv2.resize(image, (neww, newh), interpolation=cv2.INTER_AREA)
if mask is not None:
mask = cv2.resize(mask, (neww, newh), interpolation=cv2.INTER_AREA)
# adjust meta data
adjust_joint_list = []
for joint in annos: # TODO : speed up with affine transform
adjust_joint = []
for point in joint:
if point[0] < -100 or point[1] < -100:
adjust_joint.append((-1000, -1000))
continue
adjust_joint.append((int(point[0] * scalew + 0.5), int(point[1] * scaleh + 0.5)))
adjust_joint_list.append(adjust_joint)
if mask is not None:
return dst, adjust_joint_list, mask
else:
return dst, adjust_joint_list, None
def keypoint_random_resize_shortestedge(
image, annos, mask=None, min_size=(368, 368), zoom_range=(0.8, 1.2), pad_val=(0, 0, np.random.uniform(0.0, 1.0))
):
"""Randomly resize an image and corresponding keypoints based on shorter edgeself.
If the resized image is smaller than `min_size`, uses padding to make shape matchs `min_size`.
The height and width of image will be changed together, the scale would not be changed.
Parameters
-----------
image : 3 channel image
The given image for augmentation.
annos : list of list of floats
The keypoints annotation of people.
mask : single channel image or None
The mask if available.
min_size : tuple of two int
The minimum size of height and width.
zoom_range : tuple of two floats
The minimum and maximum factor to zoom in or out, e.g (0.5, 1) means zoom out 1~2 times.
pad_val : int/float, or tuple of int or random function
The three padding values for RGB channels respectively.
Returns
----------
preprocessed image, annos, mask
"""
_target_height = min_size[0]
_target_width = min_size[1]
if len(np.shape(image)) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
height, width, _ = np.shape(image)
ratio_w = _target_width / width
ratio_h = _target_height / height
ratio = min(ratio_w, ratio_h)
target_size = int(min(width * ratio + 0.5, height * ratio + 0.5))
random_target = np.random.uniform(zoom_range[0], zoom_range[1])
target_size = int(target_size * random_target)
# target_size = int(min(_network_w, _network_h) * random.uniform(0.7, 1.5))
def pose_resize_shortestedge(image, annos, mask, target_size):
""" """
# _target_height = 368
# _target_width = 368
# img = image
height, width, _ = np.shape(image)
# adjust image
scale = target_size / min(height, width)
if height < width:
newh, neww = target_size, int(scale * width + 0.5)
else:
newh, neww = int(scale * height + 0.5), target_size
dst = cv2.resize(image, (neww, newh), interpolation=cv2.INTER_AREA)
mask = cv2.resize(mask, (neww, newh), interpolation=cv2.INTER_AREA)
pw = ph = 0
if neww < _target_width or newh < _target_height:
pw = max(0, (_target_width - neww) // 2)
ph = max(0, (_target_height - newh) // 2)
mw = (_target_width - neww) % 2
mh = (_target_height - newh) % 2
# color = np.random.uniform(0.0, 1.0)
dst = cv2.copyMakeBorder(dst, ph, ph + mh, pw, pw + mw, cv2.BORDER_CONSTANT, value=pad_val) #(0, 0, color))
if mask is not None:
mask = cv2.copyMakeBorder(mask, ph, ph + mh, pw, pw + mw, cv2.BORDER_CONSTANT, value=1)
# adjust meta data
adjust_joint_list = []
for joint in annos: # TODO : speed up with affine transform
adjust_joint = []
for point in joint:
if point[0] < -100 or point[1] < -100:
adjust_joint.append((-1000, -1000))
continue
# if point[0] <= 0 or point[1] <= 0 or int(point[0]*scale+0.5) > neww or int(point[1]*scale+0.5) > newh:
# adjust_joint.append((-1, -1))
# continue
adjust_joint.append((int(point[0] * scale + 0.5) + pw, int(point[1] * scale + 0.5) + ph))
adjust_joint_list.append(adjust_joint)
if mask is not None:
return dst, adjust_joint_list, mask
else:
return dst, adjust_joint_list, None
return pose_resize_shortestedge(image, annos, mask, target_size)