122 lines
3.8 KiB
Python
122 lines
3.8 KiB
Python
#! /usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import tensorlayer as tl
|
|
from tensorlayer import logging
|
|
from tensorlayer.layers.core import Module
|
|
|
|
__all__ = [
|
|
'Dense',
|
|
]
|
|
|
|
|
|
class Dense(Module):
|
|
"""The :class:`Dense` class is a fully connected layer.
|
|
|
|
Parameters
|
|
----------
|
|
n_units : int
|
|
The number of units of this layer.
|
|
act : activation function
|
|
The activation function of this layer.
|
|
W_init : initializer
|
|
The initializer for the weight matrix.
|
|
b_init : initializer or None
|
|
The initializer for the bias vector. If None, skip biases.
|
|
in_channels: int
|
|
The number of channels of the previous layer.
|
|
If None, it will be automatically detected when the layer is forwarded for the first time.
|
|
name : None or str
|
|
A unique layer name. If None, a unique name will be automatically generated.
|
|
|
|
Examples
|
|
--------
|
|
With TensorLayer
|
|
|
|
>>> net = tl.layers.Input([100, 50], name='input')
|
|
>>> dense = tl.layers.Dense(n_units=800, act=tl.ReLU, in_channels=50, name='dense_1')
|
|
>>> print(dense)
|
|
Dense(n_units=800, relu, in_channels='50', name='dense_1')
|
|
>>> tensor = tl.layers.Dense(n_units=800, act=tl.ReLU, name='dense_2')(net)
|
|
>>> print(tensor)
|
|
tf.Tensor([...], shape=(100, 800), dtype=float32)
|
|
|
|
Notes
|
|
-----
|
|
If the layer input has more than two axes, it needs to be flatten by using :class:`Flatten`.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_units,
|
|
act=None,
|
|
W_init=tl.initializers.truncated_normal(stddev=0.05),
|
|
b_init=tl.initializers.constant(value=0.0),
|
|
in_channels=None,
|
|
name=None, # 'dense',
|
|
):
|
|
|
|
super(Dense, self).__init__(name, act=act)
|
|
|
|
self.n_units = n_units
|
|
self.W_init = W_init
|
|
self.b_init = b_init
|
|
self.in_channels = in_channels
|
|
|
|
if self.in_channels is not None:
|
|
self.build(self.in_channels)
|
|
self._built = True
|
|
|
|
logging.info(
|
|
"Dense %s: %d %s" %
|
|
(self.name, self.n_units, self.act.__class__.__name__ if self.act is not None else 'No Activation')
|
|
)
|
|
|
|
def __repr__(self):
|
|
actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
|
|
s = ('{classname}(n_units={n_units}, ' + actstr)
|
|
if self.in_channels is not None:
|
|
s += ', in_channels=\'{in_channels}\''
|
|
if self.name is not None:
|
|
s += ', name=\'{name}\''
|
|
s += ')'
|
|
return s.format(classname=self.__class__.__name__, **self.__dict__)
|
|
|
|
def build(self, inputs_shape):
|
|
if self.in_channels is None and len(inputs_shape) != 2:
|
|
raise AssertionError("The input dimension must be rank 2, please reshape or flatten it")
|
|
if self.in_channels:
|
|
shape = [self.in_channels, self.n_units]
|
|
else:
|
|
self.in_channels = inputs_shape[1]
|
|
shape = [inputs_shape[1], self.n_units]
|
|
|
|
self.W = self._get_weights("weights", shape=tuple(shape), init=self.W_init)
|
|
|
|
self.b_init_flag = False
|
|
if self.b_init:
|
|
self.b = self._get_weights("biases", shape=(self.n_units, ), init=self.b_init)
|
|
self.b_init_flag = True
|
|
self.bias_add = tl.ops.BiasAdd()
|
|
|
|
self.act_init_flag = False
|
|
if self.act:
|
|
self.act_init_flag = True
|
|
|
|
self.matmul = tl.ops.MatMul()
|
|
|
|
def forward(self, inputs):
|
|
if self._forward_state == False:
|
|
if self._built == False:
|
|
self.build(tl.get_tensor_shape(inputs))
|
|
self._built = True
|
|
self._forward_state = True
|
|
|
|
z = self.matmul(inputs, self.W)
|
|
if self.b_init_flag:
|
|
z = self.bias_add(z, self.b)
|
|
if self.act_init_flag:
|
|
z = self.act(z)
|
|
return z
|