tensorlayer3/tensorlayer/layers/convolution/ternary_conv.py

167 lines
5.8 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.layers.core import Module
from tensorlayer.layers.utils import compute_alpha, ternary_operation
__all__ = ['TernaryConv2d']
class TernaryConv2d(Module):
"""
The :class:`TernaryConv2d` class is a 2D ternary CNN layer, which weights are either -1 or 1 or 0 while inference.
Note that, the bias vector would not be tenarized.
Parameters
----------
n_filter : int
The number of filters.
filter_size : tuple of int
The filter size (height, width).
strides : tuple of int
The sliding window strides of corresponding input dimensions.
It must be in the same order as the ``shape`` parameter.
act : activation function
The activation function of this layer.
padding : str
The padding algorithm type: "SAME" or "VALID".
use_gemm : boolean
If True, use gemm instead of ``tf.matmul`` for inference.
TODO: support gemm
data_format : str
"channels_last" (NHWC, default) or "channels_first" (NCHW).
dilation_rate : tuple of int
Specifying the dilation rate to use for dilated convolution.
W_init : initializer
The initializer for the the weight matrix.
b_init : initializer or None
The initializer for the the bias vector. If None, skip biases.
in_channels : int
The number of in channels.
name : None or str
A unique layer name.
Examples
---------
With TensorLayer
>>> net = tl.layers.Input([8, 12, 12, 32], name='input')
>>> ternaryconv2d = tl.layers.TernaryConv2d(
... n_filter=64, filter_size=(5, 5), strides=(1, 1), act=tl.ReLU, padding='SAME', name='ternaryconv2d'
... )(net)
>>> print(ternaryconv2d)
>>> output shape : (8, 12, 12, 64)
"""
def __init__(
self,
n_filter=32,
filter_size=(3, 3),
strides=(1, 1),
act=None,
padding='SAME',
use_gemm=False,
data_format="channels_last",
dilation_rate=(1, 1),
W_init=tl.initializers.truncated_normal(stddev=0.02),
b_init=tl.initializers.constant(value=0.0),
in_channels=None,
name=None # 'ternary_cnn2d',
):
super().__init__(name, act=act)
self.n_filter = n_filter
self.filter_size = filter_size
self.strides = self._strides = strides
self.padding = padding
self.use_gemm = use_gemm
self.data_format = data_format
self.dilation_rate = self._dilation_rate = dilation_rate
self.W_init = W_init
self.b_init = b_init
self.in_channels = in_channels
if self.in_channels:
self.build(None)
self._built = True
logging.info(
"TernaryConv2d %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s" % (
self.name, n_filter, str(filter_size), str(strides), padding,
self.act.__class__.__name__ if self.act is not None else 'No Activation'
)
)
if use_gemm:
raise Exception("TODO. The current version use tf.matmul for inferencing.")
if len(self.strides) != 2:
raise ValueError("len(strides) should be 2.")
def __repr__(self):
actstr = self.act.__name__ if self.act is not None else 'No Activation'
s = (
'{classname}(in_channels={in_channels}, out_channels={n_filter}, kernel_size={filter_size}'
', strides={strides}, padding={padding}'
)
if self.dilation_rate != (1, ) * len(self.dilation_rate):
s += ', dilation={dilation_rate}'
if self.b_init is None:
s += ', bias=False'
s += (', ' + actstr)
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
if self.data_format == 'channels_last':
self.data_format = 'NHWC'
if self.in_channels is None:
self.in_channels = inputs_shape[-1]
self._strides = [1, self._strides[0], self._strides[1], 1]
self._dilation_rate = [1, self._dilation_rate[0], self._dilation_rate[1], 1]
elif self.data_format == 'channels_first':
self.data_format = 'NCHW'
if self.in_channels is None:
self.in_channels = inputs_shape[1]
self._strides = [1, 1, self._strides[0], self._strides[1]]
self._dilation_rate = [1, 1, self._dilation_rate[0], self._dilation_rate[1]]
else:
raise Exception("data_format should be either channels_last or channels_first")
self.filter_shape = (self.filter_size[0], self.filter_size[1], self.in_channels, self.n_filter)
self.W = self._get_weights("filters", shape=self.filter_shape, init=self.W_init)
if self.b_init:
self.b = self._get_weights("biases", shape=(self.n_filter, ), init=self.b_init)
self.bias_add = tl.ops.BiasAdd(data_format=self.data_format)
self.conv2d = tl.ops.Conv2D(
strides=self._strides, padding=self.padding, data_format=self.data_format, dilations=self._dilation_rate
)
def forward(self, inputs):
if self._forward_state == False:
if self._built == False:
self.build(tl.get_tensor_shape(inputs))
self._built = True
self._forward_state = True
alpha = compute_alpha(self.W)
W_ = ternary_operation(self.W)
W_ = tl.ops.multiply(alpha, W_)
outputs = self.conv2d(inputs, W_)
if self.b_init:
outputs = self.bias_add(outputs, self.b)
if self.act:
outputs = self.act(outputs)
return outputs