111 lines
4.2 KiB
Python
111 lines
4.2 KiB
Python
#! /usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
"""A file containing functions related to array manipulation."""
|
|
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import constant_op, dtypes, ops, tensor_shape
|
|
from tensorflow.python.framework.constant_op import constant
|
|
from tensorflow.python.framework.ops import convert_to_tensor
|
|
from tensorflow.python.ops.array_ops import shape_internal
|
|
from tensorflow.python.ops.gen_array_ops import fill, reshape
|
|
|
|
__all__ = ['alphas', 'alphas_like']
|
|
|
|
|
|
def alphas(shape, alpha_value, name=None):
|
|
"""Creates a tensor with all elements set to `alpha_value`.
|
|
This operation returns a tensor of type `dtype` with shape `shape` and all
|
|
elements set to alpha.
|
|
|
|
Parameters
|
|
----------
|
|
shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type `int32`.
|
|
The shape of the desired tensor
|
|
alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64`
|
|
The value used to fill the resulting `Tensor`.
|
|
name: str
|
|
A name for the operation (optional).
|
|
|
|
Returns
|
|
-------
|
|
A `Tensor` with all elements set to alpha.
|
|
|
|
Examples
|
|
--------
|
|
>>> tl.alphas([2, 3], tf.int32) # [[alpha, alpha, alpha], [alpha, alpha, alpha]]
|
|
"""
|
|
with ops.name_scope(name, "alphas", [shape]) as name:
|
|
|
|
alpha_tensor = convert_to_tensor(alpha_value)
|
|
alpha_dtype = dtypes.as_dtype(alpha_tensor.dtype).base_dtype
|
|
|
|
if not isinstance(shape, ops.Tensor):
|
|
try:
|
|
shape = constant_op._tensor_shape_tensor_conversion_function(tensor_shape.TensorShape(shape))
|
|
except (TypeError, ValueError):
|
|
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32)
|
|
|
|
if not shape._shape_tuple():
|
|
shape = reshape(shape, [-1]) # Ensure it's a vector
|
|
|
|
try:
|
|
output = constant(alpha_value, shape=shape, dtype=alpha_dtype, name=name)
|
|
|
|
except (TypeError, ValueError):
|
|
output = fill(shape, constant(alpha_value, dtype=alpha_dtype), name=name)
|
|
|
|
if output.dtype.base_dtype != alpha_dtype:
|
|
raise AssertionError("Dtypes do not corresponds: %s and %s" % (output.dtype.base_dtype, alpha_dtype))
|
|
|
|
return output
|
|
|
|
|
|
def alphas_like(tensor, alpha_value, name=None, optimize=True):
|
|
"""Creates a tensor with all elements set to `alpha_value`.
|
|
Given a single tensor (`tensor`), this operation returns a tensor of the same
|
|
type and shape as `tensor` with all elements set to `alpha_value`.
|
|
|
|
Parameters
|
|
----------
|
|
tensor: tf.Tensor
|
|
The Tensorflow Tensor that will be used as a template.
|
|
alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64`
|
|
The value used to fill the resulting `Tensor`.
|
|
name: str
|
|
A name for the operation (optional).
|
|
optimize: bool
|
|
if true, attempt to statically determine the shape of 'tensor' and encode it as a constant.
|
|
|
|
Returns
|
|
-------
|
|
A `Tensor` with all elements set to `alpha_value`.
|
|
|
|
Examples
|
|
--------
|
|
>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
|
|
>>> tl.alphas_like(tensor, 0.5) # [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]
|
|
"""
|
|
with ops.name_scope(name, "alphas_like", [tensor]) as name:
|
|
tensor = ops.convert_to_tensor(tensor, name="tensor")
|
|
|
|
if context.in_eager_mode(): # and dtype is not None and dtype != tensor.dtype:
|
|
ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name)
|
|
|
|
else: # if context.in_graph_mode():
|
|
|
|
# For now, variant types must be created via zeros_like; as we need to
|
|
# pass the input variant object to the proper zeros callback.
|
|
|
|
if (optimize and tensor.shape.is_fully_defined()):
|
|
# We can produce a zeros tensor independent of the value of 'tensor',
|
|
# since the shape is known statically.
|
|
ret = alphas(tensor.shape, alpha_value=alpha_value, name=name)
|
|
|
|
# elif dtype is not None and dtype != tensor.dtype and dtype != dtypes.variant:
|
|
else:
|
|
ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name)
|
|
|
|
ret.set_shape(tensor.get_shape())
|
|
|
|
return ret
|