tensorlayer3/tensorlayer/array_ops.py

111 lines
4.2 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
"""A file containing functions related to array manipulation."""
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op, dtypes, ops, tensor_shape
from tensorflow.python.framework.constant_op import constant
from tensorflow.python.framework.ops import convert_to_tensor
from tensorflow.python.ops.array_ops import shape_internal
from tensorflow.python.ops.gen_array_ops import fill, reshape
__all__ = ['alphas', 'alphas_like']
def alphas(shape, alpha_value, name=None):
"""Creates a tensor with all elements set to `alpha_value`.
This operation returns a tensor of type `dtype` with shape `shape` and all
elements set to alpha.
Parameters
----------
shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type `int32`.
The shape of the desired tensor
alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64`
The value used to fill the resulting `Tensor`.
name: str
A name for the operation (optional).
Returns
-------
A `Tensor` with all elements set to alpha.
Examples
--------
>>> tl.alphas([2, 3], tf.int32) # [[alpha, alpha, alpha], [alpha, alpha, alpha]]
"""
with ops.name_scope(name, "alphas", [shape]) as name:
alpha_tensor = convert_to_tensor(alpha_value)
alpha_dtype = dtypes.as_dtype(alpha_tensor.dtype).base_dtype
if not isinstance(shape, ops.Tensor):
try:
shape = constant_op._tensor_shape_tensor_conversion_function(tensor_shape.TensorShape(shape))
except (TypeError, ValueError):
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32)
if not shape._shape_tuple():
shape = reshape(shape, [-1]) # Ensure it's a vector
try:
output = constant(alpha_value, shape=shape, dtype=alpha_dtype, name=name)
except (TypeError, ValueError):
output = fill(shape, constant(alpha_value, dtype=alpha_dtype), name=name)
if output.dtype.base_dtype != alpha_dtype:
raise AssertionError("Dtypes do not corresponds: %s and %s" % (output.dtype.base_dtype, alpha_dtype))
return output
def alphas_like(tensor, alpha_value, name=None, optimize=True):
"""Creates a tensor with all elements set to `alpha_value`.
Given a single tensor (`tensor`), this operation returns a tensor of the same
type and shape as `tensor` with all elements set to `alpha_value`.
Parameters
----------
tensor: tf.Tensor
The Tensorflow Tensor that will be used as a template.
alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64`
The value used to fill the resulting `Tensor`.
name: str
A name for the operation (optional).
optimize: bool
if true, attempt to statically determine the shape of 'tensor' and encode it as a constant.
Returns
-------
A `Tensor` with all elements set to `alpha_value`.
Examples
--------
>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tl.alphas_like(tensor, 0.5) # [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]
"""
with ops.name_scope(name, "alphas_like", [tensor]) as name:
tensor = ops.convert_to_tensor(tensor, name="tensor")
if context.in_eager_mode(): # and dtype is not None and dtype != tensor.dtype:
ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name)
else: # if context.in_graph_mode():
# For now, variant types must be created via zeros_like; as we need to
# pass the input variant object to the proper zeros callback.
if (optimize and tensor.shape.is_fully_defined()):
# We can produce a zeros tensor independent of the value of 'tensor',
# since the shape is known statically.
ret = alphas(tensor.shape, alpha_value=alpha_value, name=name)
# elif dtype is not None and dtype != tensor.dtype and dtype != dtypes.variant:
else:
ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name)
ret.set_shape(tensor.get_shape())
return ret