33 lines
829 B
Python
33 lines
829 B
Python
#! /usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
ResNet50 for ImageNet using TL models
|
|
|
|
"""
|
|
|
|
import time
|
|
import numpy as np
|
|
import tensorlayer as tl
|
|
from examples.model_zoo.imagenet_classes import class_names
|
|
from examples.model_zoo.resnet import ResNet50
|
|
|
|
tl.logging.set_verbosity(tl.logging.DEBUG)
|
|
|
|
# get the whole model
|
|
resnet = ResNet50(pretrained=True)
|
|
resnet.set_eval()
|
|
|
|
img1 = tl.vis.read_image('data/tiger.jpeg')
|
|
img1 = tl.prepro.imresize(img1, (224, 224))[:, :, ::-1]
|
|
img1 = img1 - np.array([103.939, 116.779, 123.68]).reshape((1, 1, 3))
|
|
|
|
img1 = img1.astype(np.float32)[np.newaxis, ...]
|
|
|
|
start_time = time.time()
|
|
output = resnet(img1)
|
|
prob = tl.ops.softmax(output)[0].numpy()
|
|
print(" End time : %.5ss" % (time.time() - start_time))
|
|
preds = (np.argsort(prob)[::-1])[0:5]
|
|
for p in preds:
|
|
print(class_names[p], prob[p])
|