mirror of https://github.com/open-mmlab/mmpose
163 lines
5.5 KiB
Python
163 lines
5.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
|
|
from mmengine.config import Config, DictAction
|
|
from mmengine.runner import Runner
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train a pose model')
|
|
parser.add_argument('config', help='train config file path')
|
|
parser.add_argument('--work-dir', help='the dir to save logs and models')
|
|
parser.add_argument(
|
|
'--resume',
|
|
nargs='?',
|
|
type=str,
|
|
const='auto',
|
|
help='If specify checkpint path, resume from it, while if not '
|
|
'specify, try to auto resume from the latest checkpoint '
|
|
'in the work directory.')
|
|
parser.add_argument(
|
|
'--amp',
|
|
action='store_true',
|
|
default=False,
|
|
help='enable automatic-mixed-precision training')
|
|
parser.add_argument(
|
|
'--no-validate',
|
|
action='store_true',
|
|
help='whether not to evaluate the checkpoint during training')
|
|
parser.add_argument(
|
|
'--auto-scale-lr',
|
|
action='store_true',
|
|
help='whether to auto scale the learning rate according to the '
|
|
'actual batch size and the original batch size.')
|
|
parser.add_argument(
|
|
'--show-dir',
|
|
help='directory where the visualization images will be saved.')
|
|
parser.add_argument(
|
|
'--show',
|
|
action='store_true',
|
|
help='whether to display the prediction results in a window.')
|
|
parser.add_argument(
|
|
'--interval',
|
|
type=int,
|
|
default=1,
|
|
help='visualize per interval samples.')
|
|
parser.add_argument(
|
|
'--wait-time',
|
|
type=float,
|
|
default=1,
|
|
help='display time of every window. (second)')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
|
|
# will pass the `--local-rank` parameter to `tools/train.py` instead
|
|
# of `--local_rank`.
|
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
return args
|
|
|
|
|
|
def merge_args(cfg, args):
|
|
"""Merge CLI arguments to config."""
|
|
if args.no_validate:
|
|
cfg.val_cfg = None
|
|
cfg.val_dataloader = None
|
|
cfg.val_evaluator = None
|
|
|
|
cfg.launcher = args.launcher
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
cfg.work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
# enable automatic-mixed-precision training
|
|
if args.amp is True:
|
|
from mmengine.optim import AmpOptimWrapper, OptimWrapper
|
|
optim_wrapper = cfg.optim_wrapper.get('type', OptimWrapper)
|
|
assert optim_wrapper in (OptimWrapper, AmpOptimWrapper,
|
|
'OptimWrapper', 'AmpOptimWrapper'), \
|
|
'`--amp` is not supported custom optimizer wrapper type ' \
|
|
f'`{optim_wrapper}.'
|
|
cfg.optim_wrapper.type = 'AmpOptimWrapper'
|
|
cfg.optim_wrapper.setdefault('loss_scale', 'dynamic')
|
|
|
|
# resume training
|
|
if args.resume == 'auto':
|
|
cfg.resume = True
|
|
cfg.load_from = None
|
|
elif args.resume is not None:
|
|
cfg.resume = True
|
|
cfg.load_from = args.resume
|
|
|
|
# enable auto scale learning rate
|
|
if args.auto_scale_lr:
|
|
cfg.auto_scale_lr.enable = True
|
|
|
|
# visualization
|
|
if args.show or (args.show_dir is not None):
|
|
assert 'visualization' in cfg.default_hooks, \
|
|
'PoseVisualizationHook is not set in the ' \
|
|
'`default_hooks` field of config. Please set ' \
|
|
'`visualization=dict(type="PoseVisualizationHook")`'
|
|
|
|
cfg.default_hooks.visualization.enable = True
|
|
cfg.default_hooks.visualization.show = args.show
|
|
if args.show:
|
|
cfg.default_hooks.visualization.wait_time = args.wait_time
|
|
cfg.default_hooks.visualization.out_dir = args.show_dir
|
|
cfg.default_hooks.visualization.interval = args.interval
|
|
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
return cfg
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
# load config
|
|
cfg = Config.fromfile(args.config)
|
|
|
|
# merge CLI arguments to config
|
|
cfg = merge_args(cfg, args)
|
|
|
|
# set preprocess configs to model
|
|
if 'preprocess_cfg' in cfg:
|
|
cfg.model.setdefault('data_preprocessor',
|
|
cfg.get('preprocess_cfg', {}))
|
|
|
|
# build the runner from config
|
|
runner = Runner.from_cfg(cfg)
|
|
|
|
# start training
|
|
runner.train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|