mmpose/tools/test.py

167 lines
5.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import mmengine
from mmengine.config import Config, DictAction
from mmengine.hooks import Hook
from mmengine.runner import Runner
def parse_args():
parser = argparse.ArgumentParser(
description='MMPose test (and eval) model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir', help='the directory to save evaluation results')
parser.add_argument('--out', help='the file to save metric results.')
parser.add_argument(
'--dump',
type=str,
help='dump predictions to a pickle file for offline evaluation')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--show-dir',
help='directory where the visualization images will be saved.')
parser.add_argument(
'--show',
action='store_true',
help='whether to display the prediction results in a window.')
parser.add_argument(
'--interval',
type=int,
default=1,
help='visualize per interval samples.')
parser.add_argument(
'--wait-time',
type=float,
default=1,
help='display time of every window. (second)')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/test.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
parser.add_argument(
'--badcase',
action='store_true',
help='whether analyze badcase in test')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def merge_args(cfg, args):
"""Merge CLI arguments to config."""
cfg.launcher = args.launcher
cfg.load_from = args.checkpoint
# -------------------- work directory --------------------
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# -------------------- visualization --------------------
if (args.show and not args.badcase) or (args.show_dir is not None):
assert 'visualization' in cfg.default_hooks, \
'PoseVisualizationHook is not set in the ' \
'`default_hooks` field of config. Please set ' \
'`visualization=dict(type="PoseVisualizationHook")`'
cfg.default_hooks.visualization.enable = True
cfg.default_hooks.visualization.show = False \
if args.badcase else args.show
if args.show:
cfg.default_hooks.visualization.wait_time = args.wait_time
cfg.default_hooks.visualization.out_dir = args.show_dir
cfg.default_hooks.visualization.interval = args.interval
# -------------------- badcase analyze --------------------
if args.badcase:
assert 'badcase' in cfg.default_hooks, \
'BadcaseAnalyzeHook is not set in the ' \
'`default_hooks` field of config. Please set ' \
'`badcase=dict(type="BadcaseAnalyzeHook")`'
cfg.default_hooks.badcase.enable = True
cfg.default_hooks.badcase.show = args.show
if args.show:
cfg.default_hooks.badcase.wait_time = args.wait_time
cfg.default_hooks.badcase.interval = args.interval
metric_type = cfg.default_hooks.badcase.get('metric_type', 'loss')
if metric_type not in ['loss', 'accuracy']:
raise ValueError('Only support badcase metric type'
"in ['loss', 'accuracy']")
if metric_type == 'loss':
if not cfg.default_hooks.badcase.get('metric'):
cfg.default_hooks.badcase.metric = cfg.model.head.loss
else:
if not cfg.default_hooks.badcase.get('metric'):
cfg.default_hooks.badcase.metric = cfg.test_evaluator
# -------------------- Dump predictions --------------------
if args.dump is not None:
assert args.dump.endswith(('.pkl', '.pickle')), \
'The dump file must be a pkl file.'
dump_metric = dict(type='DumpResults', out_file_path=args.dump)
if isinstance(cfg.test_evaluator, (list, tuple)):
cfg.test_evaluator = [*cfg.test_evaluator, dump_metric]
else:
cfg.test_evaluator = [cfg.test_evaluator, dump_metric]
# -------------------- Other arguments --------------------
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
return cfg
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
cfg = merge_args(cfg, args)
# build the runner from config
runner = Runner.from_cfg(cfg)
if args.out:
class SaveMetricHook(Hook):
def after_test_epoch(self, _, metrics=None):
if metrics is not None:
mmengine.dump(metrics, args.out)
runner.register_hook(SaveMetricHook(), 'LOWEST')
# start testing
runner.test()
if __name__ == '__main__':
main()