mmpose/tools/misc/browse_dataset.py

196 lines
7.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from itertools import accumulate
import mmcv
import mmengine
import mmengine.fileio as fileio
from mmengine import Config, DictAction
from mmengine.registry import build_from_cfg, init_default_scope
from mmengine.structures import InstanceData
from mmpose.datasets import CombinedDataset
from mmpose.registry import DATASETS, VISUALIZERS
from mmpose.structures import PoseDataSample
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='If there is no display interface, you can save it.')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--max-item-per-dataset',
default=50,
type=int,
help='Define the maximum item processed per dataset')
parser.add_argument(
'--phase',
default='train',
type=str,
choices=['train', 'test', 'val'],
help='phase of dataset to visualize, accept "train" "test" and "val".'
' Defaults to "train".')
parser.add_argument(
'--show-interval',
type=float,
default=2,
help='the interval of show (s)')
parser.add_argument(
'--mode',
default='transformed',
type=str,
choices=['original', 'transformed'],
help='display mode; display original pictures or transformed '
'pictures. "original" means to show images load from disk'
'; "transformed" means to show images after transformed;'
'Defaults to "transformed".')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def generate_dup_file_name(out_file):
"""Automatically rename out_file when duplicated file exists.
This case occurs when there is multiple instances on one image.
"""
if out_file and osp.exists(out_file):
img_name, postfix = osp.basename(out_file).rsplit('.', 1)
exist_files = tuple(
filter(lambda f: f.startswith(img_name),
os.listdir(osp.dirname(out_file))))
if len(exist_files) > 0:
img_path = f'{img_name}({len(exist_files)}).{postfix}'
out_file = osp.join(osp.dirname(out_file), img_path)
return out_file
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
backend_args = cfg.get('backend_args', dict(backend='local'))
# register all modules in mmpose into the registries
scope = cfg.get('default_scope', 'mmpose')
if scope is not None:
init_default_scope(scope)
if args.mode == 'original':
cfg[f'{args.phase}_dataloader'].dataset.pipeline = []
else:
# pack transformed keypoints for visualization
cfg[f'{args.phase}_dataloader'].dataset.pipeline[
-1].pack_transformed = True
dataset = build_from_cfg(cfg[f'{args.phase}_dataloader'].dataset, DATASETS)
visualizer = VISUALIZERS.build(cfg.visualizer)
visualizer.set_dataset_meta(dataset.metainfo)
if isinstance(dataset, CombinedDataset):
def generate_index_generator(dataset_starting_indexes: list,
max_item_datasets: int):
"""Generates indexes to traverse each dataset element in turn,
based on starting indexes and maximum items per dataset."""
for relative_idx in range(max(max_item_datasets)):
for dataset_idx, dataset_starting_idx in enumerate(
dataset_starting_indexes):
if relative_idx >= max_item_datasets[dataset_idx]:
continue
yield dataset_starting_idx + relative_idx
# Generate starting indexes for each dataset
dataset_starting_indexes = list(accumulate([0] + dataset.lens[:-1]))
max_item_datasets = [
min(dataset_len, args.max_item_per_dataset)
for dataset_len in dataset.lens
]
# Generate indexes using the generator
indexes = generate_index_generator(dataset_starting_indexes,
max_item_datasets)
total = sum(max_item_datasets)
multiple_datasets = True
else:
max_length = min(len(dataset), args.max_item_per_dataset)
indexes = iter(range(max_length))
total = max_length
multiple_datasets = False
progress_bar = mmengine.ProgressBar(total)
for idx in indexes:
item = dataset[idx]
if args.mode == 'original':
img_path = item['img_path']
img_bytes = fileio.get(img_path, backend_args=backend_args)
img = mmcv.imfrombytes(img_bytes, channel_order='bgr')
dataset_name = item.get('dataset_name', None)
# forge pseudo data_sample
gt_instances = InstanceData()
gt_instances.keypoints = item['keypoints']
if item['keypoints_visible'].ndim == 3:
gt_instances.keypoints_visible = item['keypoints_visible'][...,
0]
else:
gt_instances.keypoints_visible = item['keypoints_visible']
gt_instances.bboxes = item['bbox']
data_sample = PoseDataSample()
data_sample.gt_instances = gt_instances
else:
img = item['inputs'].permute(1, 2, 0).numpy()
data_sample = item['data_samples']
img_path = data_sample.img_path
dataset_name = data_sample.metainfo.get('dataset_name', None)
# save image with annotation
output_dir = osp.join(
args.output_dir, dataset_name
) if multiple_datasets and dataset_name else args.output_dir
out_file = osp.join(
output_dir,
osp.basename(img_path)) if args.output_dir is not None else None
out_file = generate_dup_file_name(out_file)
img = mmcv.bgr2rgb(img)
visualizer.add_datasample(
osp.basename(img_path),
img,
data_sample,
draw_pred=False,
draw_bbox=(args.mode == 'original'),
draw_heatmap=True,
show=not args.not_show,
wait_time=args.show_interval,
out_file=out_file)
progress_bar.update()
if __name__ == '__main__':
main()